Alessio Tamburrano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6695088/publications.pdf

Version: 2024-02-01

49 papers

2,112 citations

257429 24 h-index 302107 39 g-index

50 all docs 50 docs citations

50 times ranked

2317 citing authors

#	Article	IF	CITATIONS
1	Exploring the Capabilities of a Piezoresistive Graphene-Loaded Waterborne Paint for Discrete Strain and Spatial Sensing. Sensors, 2022, 22, 4241.	3.8	3
2	Production and characterization of Graphene Nanoplatelet-based ink for smart textile strain sensors via screen printing technique. Materials and Design, 2021, 198, 109306.	7.0	61
3	Fabrication of 3D monolithic graphene foam/polycaprolactone porous nanocomposites for bioapplications. Journal of Materials Science, 2021, 56, 5581-5594.	3.7	7
4	Waterproof Graphene-PVDF Wearable Strain Sensors for Movement Detection in Smart Gloves. Sensors, 2021, 21, 5277.	3.8	10
5	Broadband Electromagnetic Absorbing Structures Made of Graphene/Glass-Fiber/Epoxy Composite. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 590-601.	4.6	15
6	Flexible Ecoflex®/Graphene Nanoplatelet Foams for Highly Sensitive Low-Pressure Sensors. Sensors, 2020, 20, 4406.	3.8	22
7	Flexible Graphene Based Polymeric Electrodes for Low Energy Applications. , 2020, , .		3
8	Phase Inversion in PVDF Films with Enhanced Piezoresponse Through Spin-Coating and Quenching. Polymers, 2019, 11, 1096.	4.5	39
9	3D Porous Graphene Based Aerogel for Electromagnetic Applications. Scientific Reports, 2019, 9, 15719.	3.3	25
10	Piezoresistive Fabric Produced Through PVDF-Graphene Nanocomposite Film Incorporation in Textile Via Screen Printing Technique. , $2019, \ldots$		2
11	Graphene-Coated Honeycomb for Broadband Lightweight Absorbers. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 1454-1462.	2.2	50
12	Piezoelectric Effect and Electroactive Phase Nucleation in Self-Standing Films of Unpoled PVDF Nanocomposite Films. Nanomaterials, 2018, 8, 743.	4.1	26
13	Electrical, Mechanical and Electromechanical Properties of Graphene-Thermoset Polymer Composites Produced Using Acetone-DMF Solvents. Polymers, 2018, 10, 82.	4.5	12
14	Piezo-resistive properties of graphene based PVDF composite films for strain sensing., 2017,,.		4
15	Electromagnetic and Dynamic Mechanical Properties of Epoxy and Vinylester-Based Composites Filled with Graphene Nanoplatelets. Polymers, 2016, 8, 272.	4.5	45
16	Electro-Mechanical Properties of Multilayer Graphene-Based Polymeric Composite Obtained through a Capillary Rise Method. Sensors, 2016, 16, 1780.	3.8	10
17	A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets. Sensors, 2016, 16, 2148.	3.8	156
18	Electrical and Electromechanical Properties of Stretchable Multilayer-Graphene/PDMS Composite Foils. IEEE Nanotechnology Magazine, 2016, 15, 687-695.	2.0	6

#	Article	IF	Citations
19	Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties. Beilstein Journal of Nanotechnology, 2015, 6, 2028-2038.	2.8	63
20	Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield. Carbon, 2015, 89, 260-271.	10.3	122
21	Graphene-Based Strain Sensor Array on Carbon Fiber Composite Laminate. IEEE Sensors Journal, 2015, 15, 7295-7303.	4.7	19
22	Coaxial Waveguide Methods for Shielding Effectiveness Measurement of Planar Materials Up to 18 GHz. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1386-1395.	2.2	29
23	Cyclododecane as support material for clean and facile transfer of large-area few-layer graphene. Applied Physics Letters, 2014, 105, .	3.3	40
24	Electromagnetic absorbing properties of graphene–polymer composite shields. Carbon, 2014, 73, 175-184.	10.3	113
25	Effect of Grain Size and Distribution on the Shielding Effectiveness of Transparent Conducting Thin Films. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 352-359.	2.2	18
26	Shielding Effectiveness of Protective Metallic Wire Meshes: EM Modeling and Validation. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 615-621.	2.2	42
27	The piezoresistive effect in graphene-based polymeric composites. Nanotechnology, 2013, 24, 465702.	2.6	50
28	Electrical conductivity of carbon nanotubes grown inside a mesoporous anodic aluminium oxide membrane. Carbon, 2013, 55, 10-22.	10.3	34
29	Quantum Transport and Current Distribution at Radio Frequency in Multiwall Carbon Nanotubes. IEEE Nanotechnology Magazine, 2012, 11, 492-500.	2.0	6
30	Graphite nano-platelet-based composites for microwave absorbing small enclosures., 2012,,.		1
31	Robust Design of High-Speed Interconnects Based on an MWCNT. IEEE Nanotechnology Magazine, 2012, 11, 799-807.	2.0	23
32	Near Field Radiated From Carbon Nanotube Bundles. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 998-1005.	2.2	2
33	Synthesis, Modeling, and Experimental Characterization of Graphite Nanoplatelet-Based Composites for EMC Applications. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 17-27.	2.2	90
34	Electromagnetic modelling and experimental characterization of carbon-based nanocomposites. , 2011,		1
35	Electromechanical modeling of GNP nanocomposites for stress sensors applications. , 2011, , .		2
36	Effect of electric field polarization and temperature on the effective permittivity and conductivity of porous anodic aluminium oxide membranes. Microelectronic Engineering, 2011, 88, 3338-3346.	2.4	8

3

#	Article	IF	CITATIONS
37	Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency. Carbon, 2011, 49, 4291-4300.	10.3	77
38	Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties. Materials & Design, 2011, 32, 337-342.	5.1	119
39	Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers. Composites Science and Technology, 2010, 70, 102-109.	7.8	145
40	Fast Transient Analysis of Next-Generation Interconnects Based on Carbon Nanotubes. IEEE Transactions on Electromagnetic Compatibility, 2010, 52, 496-503.	2.2	113
41	SPICE-model of multiwall carbon nanotube through-hole vias. , 2010, , .		3
42	Single-Conductor Transmission-Line Model of Multiwall Carbon Nanotubes. IEEE Nanotechnology Magazine, 2010, 9, 82-92.	2.0	164
43	New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects. IEEE Nanotechnology Magazine, 2009, 8, 214-225.	2.0	58
44	Electromagnetic Design and Realization of Innovative Fiber-Reinforced Broad-Band Absorbing Screens. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 700-707.	2.2	65
45	EMC Impact of Advanced Carbon Fiber/Carbon Nanotube Reinforced Composites for Next-Generation Aerospace Applications. IEEE Transactions on Electromagnetic Compatibility, 2008, 50, 556-563.	2.2	124
46	Equivalent Circuit Model of MWCNT Nanointerconnects., 2008,,.		0
47	Shielding performances of ITO transparent windows: Theoretical and experimental characterization. , 2008, , .		11
48	Innovative Test Method for the Shielding Effectiveness Measurement of Conductive Thin Films in a Wide Frequency Range. IEEE Transactions on Electromagnetic Compatibility, 2006, 48, 331-341.	2.2	71
49	Enhancement of the piezoelectric coefficient in PVDF-TrFe/CoFe ₂ O ₄ nanocomposites through DC magnetic poling. Beilstein Journal of Nanotechnology, 0, 12, 1262-1270.	2.8	3