
Jianxin Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6694904/publications.pdf Version: 2024-02-01

ILANYIN CHAN

#	Article	IF	CITATIONS
1	Wideâ€Range Colorâ€Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angewandte Chemie - International Edition, 2020, 59, 16054-16060.	7.2	340
2	Concepts in the design and engineering of single-molecule electronic devices. Nature Reviews Physics, 2019, 1, 211-230.	11.9	327
3	Interfaceâ€Engineered Plasmonics in Metal/Semiconductor Heterostructures. Advanced Energy Materials, 2016, 6, 1600431.	10.2	95
4	Direct Observation of Aggregationâ€Induced Emission Mechanism. Angewandte Chemie - International Edition, 2020, 59, 14903-14909.	7.2	85
5	Direct single-molecule dynamic detection of chemical reactions. Science Advances, 2018, 4, eaar2177.	4.7	78
6	Label-Free Dynamic Detection of Single-Molecule Nucleophilic-Substitution Reactions. Nano Letters, 2018, 18, 4156-4162.	4.5	48
7	Wideâ€Range Colorâ€Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angewandte Chemie, 2020, 132, 16188-16194.	1.6	40
8	Garnet-doped composite polymer electrolyte with high ionic conductivity for dendrite-free lithium batteries. Journal of Energy Storage, 2019, 24, 100767.	3.9	33
9	Ultrafast probes of electron–hole transitions between two atomic layers. Nature Communications, 2018, 9, 1859.	5.8	30
10	What Leads to Aggregation-Induced Emission?. Journal of Physical Chemistry Letters, 2021, 12, 4218-4226.	2.1	28
11	Photoluminescence of monolayer MoS ₂ modulated by water/O ₂ /laser irradiation. Physical Chemistry Chemical Physics, 2021, 23, 24579-24588.	1.3	11
12	Direct Observation of Aggregationâ€Induced Emission Mechanism. Angewandte Chemie, 2020, 132, 15013-15019.	1.6	9
13	Facile ACQ-to-AIE transformation <i>via</i> diphenylphosphine (DPP) modification with versatile properties. Journal of Materials Chemistry C, 2022, 10, 3560-3566.	2.7	7
14	Highâ€Efficiency Photovoltaic Conversion at Selective Electron Tunneling Heterointerfaces. Advanced Electronic Materials, 2017, 3, 1700211.	2.6	5
15	Aggregation-induced emission with large redshift in 2,7-diphenyl-fluorenone: Reality or artifact?. Chinese Journal of Chemical Physics, 2021, 34, 867-873.	0.6	2
16	Double crossing conical intersections and anti-Vavilov fluorescence in tetraphenyl ethylene. Journal of Chemical Physics, 2022, 156, 144302.	1.2	1
17	Concealing Messages at the Atomicâ€Thin Level by Reaching the Limit of Writing. Advanced Materials Technologies, 2022, 7, 2101089.	3.0	0
18	Two-Atomic-Layered Optoelectronic Device Enabled by Charge Separation on Graphene/Semiconductor Interface. Journal of Chemical Physics, 2022, 156, 044704.	1.2	0