Tania Yonow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6694827/publications.pdf

Version: 2024-02-01

687363 752698 20 910 13 20 h-index citations g-index papers 20 20 20 888 times ranked citing authors docs citations all docs

#	Article	IF	CITATIONS
1	The potential distribution of Chromolaena odorata (Siam weed) in relation to climate. Weed Research, 2005, 45, 246-254.	1.7	124
2	Potential impact of climate change on plant diseases of economic significance to Australia. Australasian Plant Pathology, 1998, 27, 15.	1.0	123
3	The vulnerability of Australian horticulture to the Queensland fruit fly, Bactrocera (Dacus) tryoni, under climate change. Australian Journal of Agricultural Research, 2000, 51, 467.	1.5	123
4	The geographical distribution of the Queensland fruit fly, Bactrocera (Dacus) tryoni, in relation to climate. Australian Journal of Agricultural Research, 1998, 49, 935.	1.5	109
5	Modelling the population dynamics of the Queensland fruit fly, Bactrocera (Dacus) tryoni: a cohort-based approach incorporating the effects of weather. Ecological Modelling, 2004, 173, 9-30.	2.5	74
6	CLIMEX modelling of the potential global distribution of the citrus black spot disease caused by Guignardia citricarpa and the risk posed to Europe. Crop Protection, 2013, 44, 18-28.	2.1	70
7	The Potential Geographic Range of Pyrenophora semeniperda. Phytopathology, 2004, 94, 805-812.	2.2	49
8	The potential global distribution of Chilo partellus, including consideration of irrigation and cropping patterns. Journal of Pest Science, 2017, 90, 459-477.	3.7	49
9	Population dynamics and management of diamondback moth (<i>Plutella xylostella (i>) in China: the relative contributions of climate, natural enemies and cropping patterns. Bulletin of Entomological Research, 2016, 106, 197-214.</i>	1.0	35
10	The potential distribution of cassava mealybug (Phenacoccus manihoti), a threat to food security for the poor. PLoS ONE, 2017, 12, e0173265.	2.5	29
11	Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence of whiteflies and cassava diseases. Scientific Reports, 2020, 10, 22049.	3.3	28
12	The life-cycle of Amblyomma variegatum (Acari: Ixodidae): a literature synthesis with a view to modelling. International Journal for Parasitology, 1995, 25, 1023-1060.	3.1	22
13	Black Sigatoka in bananas: Ecoclimatic suitability and disease pressure assessments. PLoS ONE, 2019, 14, e0220601.	2.5	22
14	Modelling the Potential Geographic Distribution of Two Trissolcus Species for the Brown Marmorated Stink Bug, Halyomorpha halys. Insects, 2021, 12, 491.	2.2	15
15	Management and population dynamics of diamondback moth (<i>Plutella xylostella</i>): planting regimes, crop hygiene, biological control and timing of interventions. Bulletin of Entomological Research, 2019, 109, 257-265.	1.0	12
16	The potential geographical distribution and phenology of Bemisia tabaci Middle East/Asia Minor 1, considering irrigation and glasshouse production. Bulletin of Entomological Research, 2020, 110, 567-576.	1.0	10
17	Considering biology when inferring range-limiting stress mechanisms for agricultural pests: a case study of the beet armyworm. Journal of Pest Science, 2018, 91, 523-538.	3.7	6
18	Model for survival of unfed female Amblyomma variegatum (Acari: Ixodidae) in Kenya. Experimental and Applied Acarology, 1993, 17, 473-485.	1.6	5

#	Article	IF	CITATIONS
19	Misconstrued risks from citrus black spot in colder climates: a response to Er et al. 2013. European Journal of Plant Pathology, 2014, 139, 231-236.	1.7	4
20	Scientific critique of the paper "Climatic distribution of citrus black spot caused by Phyllosticta citricarpa. A historical analysis of disease spread in South Africa―by MartÃnez-Minaya et al. (2015). European Journal of Plant Pathology, 2017, 148, 497-502.	1.7	1