Pavel Babica

List of Publications by Citations

Source: https://exaly.com/author-pdf/669471/pavel-babica-publications-by-citations.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

70 1,809 24 40 g-index

76 2,107 4.9 avg, IF L-index

#	Paper	IF	Citations
70	EXPLORING THE NATURAL ROLE OF MICROCYSTINSA REVIEW OF EFFECTS ON PHOTOAUTOTROPHIC ORGANISMS1. <i>Journal of Phycology</i> , 2006 , 42, 9-20	3	180
69	Toxins produced in cyanobacterial water blooms - toxicity and risks. <i>Interdisciplinary Toxicology</i> , 2009 , 2, 36-41	2.3	162
68	Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. <i>Water Research</i> , 2010 , 44, 505-20	12.5	136
67	Evaluation of extraction approaches linked to ELISA and HPLC for analyses of microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents. <i>Analytical and Bioanalytical Chemistry</i> , 2006 , 385, 1545-51	4.4	84
66	Microcystin kinetics (bioaccumulation and elimination) and biochemical responses in common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix) exposed to toxic cyanobacterial blooms. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 2687-93	3.8	69
65	Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. <i>Environmental Chemistry Letters</i> , 2008 , 6, 223-227	13.3	55
64	Toxicity of complex cyanobacterial samples and their fractions in Xenopus laevis embryos and the role of microcystins. <i>Aquatic Toxicology</i> , 2006 , 80, 346-54	5.1	54
63	Structure-activity-dependent regulation of cell communication by perfluorinated fatty acids using in vivo and in vitro model systems. <i>Environmental Health Perspectives</i> , 2009 , 117, 545-51	8.4	53
62	Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio L.). <i>Aquatic Toxicology</i> , 2007 , 81, 312-8	5.1	52
61	Tumor promoting properties of a cigarette smoke prevalent polycyclic aromatic hydrocarbon as indicated by the inhibition of gap junctional intercellular communication via phosphatidylcholine-specific phospholipase C. <i>Cancer Science</i> , 2008 , 99, 696-705	6.9	47
60	Immunomodulatory Potency of Microcystin, an Important Water-Polluting Cyanobacterial Toxin. <i>Environmental Science & Environmental Science & Environme</i>	10.3	43
59	. <i>Phycologia</i> , 2007 , 46, 137-142	2.7	39
58	Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	36
57	Detoxification and oxidative stress responses along with microcystins accumulation in Japanese quail exposed to cyanobacterial biomass. <i>Science of the Total Environment</i> , 2008 , 398, 34-47	10.2	35
56	Concentrations and Seasonal Trends of Extracellular Microcystins in Freshwaters of the Czech Republic [Results of the National Monitoring Program. <i>Clean - Soil, Air, Water</i> , 2007 , 35, 348-354	1.6	35
55	Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins. <i>Toxicon</i> , 2014 , 79, 11-8	2.8	34
54	Survey of cyanobacterial toxins in Czech water reservoirsthe first observation of neurotoxic saxitoxins. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 8006-15	5.1	33

(2018-2008)

53	water blooms and comparison with the effects of heterotrophic bacteria and green alga. <i>Journal of Applied Toxicology</i> , 2008 , 28, 72-7	4.1	33	
52	Different DNA damage response of cis and trans isomers of commonly used UV filter after the exposure on adult human liver stem cells and human lymphoblastoid cells. <i>Science of the Total Environment</i> , 2017 , 593-594, 18-26	10.2	32	
51	Polycyclic aromatic hydrocarbon-induced signaling events relevant to inflammation and tumorigenesis in lung cells are dependent on molecular structure. <i>PLoS ONE</i> , 2014 , 8, e65150	3.7	32	
50	Removal of microcystins by phototrophic biofilms. A microcosm study. <i>Environmental Science and Pollution Research</i> , 2005 , 12, 369-74	5.1	27	
49	Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat Liver Cell Model. <i>PLoS ONE</i> , 2015 , 10, e0124454	3.7	26	
48	A novel approach for monitoring of cyanobacterial toxins: development and evaluation of the passive sampler for microcystins. <i>Analytical and Bioanalytical Chemistry</i> , 2008 , 390, 1167-72	4.4	26	
47	Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields. <i>Bioelectrochemistry</i> , 2016 , 112, 33-46	5.6	25	
46	Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga Pseudokirchneriella subcapitata and comparison with the model oxidative stressorherbicide paraquat. <i>Environmental Toxicology</i> , 2011 , 26, 641-8	4.2	23	
45	Contamination of some reservoirs and lakes in Republic of Bulgaria by microcystins. <i>Clean - Soil, Air, Water</i> , 2006 , 34, 437-441		23	
44	Effects of cyanobacterial biomass on the Japanese quail. <i>Toxicon</i> , 2007 , 49, 793-803	2.8	23	
43	Insights into the molecular targets and emerging pharmacotherapeutic interventions for nonalcoholic fatty liver disease. <i>Metabolism: Clinical and Experimental</i> , 2022 , 126, 154925	12.7	23	
42	High-valent iron (Fe(VI), Fe(V), and Fe(IV)) species in water: characterization and oxidative transformation of estrogenic hormones. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 18802-10	3.6	20	
41	Scrape Loading/Dye Transfer Assay. <i>Methods in Molecular Biology</i> , 2016 , 1437, 133-44	1.4	20	
40	Polycyclic Aromatic Hydrocarbons and Endocrine Disruption: Role of Testicular Gap Junctional Intercellular Communication and Connexins. <i>Toxicological Sciences</i> , 2019 , 169, 70-83	4.4	19	
39	Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extractsindications of novel tumor-promoting cyanotoxins?. <i>Toxicon</i> , 2010 , 55, 126-34	2.8	19	
38	Modulation of gap-junctional intercellular communication by a series of cyanobacterial samples from nature and laboratory cultures. <i>Toxicon</i> , 2011 , 58, 76-84	2.8	17	
37	Application of passive sampling for sensitive time-integrative monitoring of cyanobacterial toxins microcystins in drinking water treatment plants. <i>Water Research</i> , 2019 , 153, 108-120	12.5	16	
36	Assessment of Hepatotoxic Potential of Cyanobacterial Toxins Using 3D In Vitro Model of Adult Human Liver Stem Cells. <i>Environmental Science & Environmental Science & Environ</i>	10.3	14	

35	Temporal and spatial variability of cyanobacterial toxins microcystins in three interconnected freshwater reservoirs. <i>Journal of the Serbian Chemical Society</i> , 2010 , 75, 1303-1312	0.9	14
34	Separation of microcystins by capillary electrochromatography in monolithic columns. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2006 , 841, 140-4	3.2	14
33	Endocrine-disrupting chemicals rapidly affect intercellular signaling in Leydig cells. <i>Toxicology and Applied Pharmacology</i> , 2020 , 404, 115177	4.6	14
32	Assessment of cyanoprokaryote blooms and of cyanotoxins in Bulgaria in a 15-years period (2000-2015). <i>Advances in Oceanography and Limnology</i> , 2017 , 8,	1.3	13
31	Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells. <i>Toxicological Sciences</i> , 2016 , 153, 174-85	4.4	13
30	Chemopreventive Agents Attenuate Rapid Inhibition of Gap Junctional Intercellular Communication Induced by Environmental Toxicants. <i>Nutrition and Cancer</i> , 2016 , 68, 827-37	2.8	13
29	Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure. <i>European Biophysics Journal</i> , 2017 , 46, 567-580	1.9	12
28	Tumor-promoting cyanotoxin microcystin-LR does not induce procarcinogenic events in adult human liver stem cells. <i>Toxicology and Applied Pharmacology</i> , 2018 , 345, 103-113	4.6	12
27	Extract of Microcystis water bloom affects cellular differentiation in filamentous cyanobacterium Trichormus variabilis (Nostocales, Cyanobacteria). <i>Journal of Applied Phycology</i> , 2011 , 23, 967-973	3.2	12
26	Cyanobacteria species identified in the Weija and Kpong reservoirs, Ghana, and their implications for drinking water quality with respect to microcystin. <i>African Journal of Marine Science</i> , 2006 , 28, 451-4	56 8	11
25	Microcystin-LR Does Not Alter Cell Survival and Intracellular Signaling in Human Bronchial Epithelial Cells. <i>Toxins</i> , 2020 , 12,	4.9	10
24	Tumor promoting effects of cyanobacterial extracts are potentiated by anthropogenic contaminantsevidence from in vitro study. <i>Chemosphere</i> , 2012 , 89, 30-7	8.4	10
23	Effects of cylindrospermopsin on cultured immortalized human airway epithelial cells. <i>Chemosphere</i> , 2019 , 220, 620-628	8.4	10
22	Gap Junctional Intercellular Communication: A Functional Biomarker to Assess Adverse Effects of Toxicants and Toxins, and Health Benefits of Natural Products. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	9
21	Lipopolysaccharides from Cyanobacteria-Dominated Water Bloom and from Laboratory Cultures Trigger Human Immune Innate Response. <i>Toxins</i> , 2019 , 11,	4.9	8
20	Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. <i>Scientific Reports</i> , 2020 , 10, 730	4.9	7
19	Cylindrospermopsin induces cellular stress and activation of ERK1/2 and p38 MAPK pathways in adult human liver stem cells. <i>Chemosphere</i> , 2019 , 227, 43-52	8.4	6
18	Effects of Different Oxygen Saturation on Activity of Complex Biomass and Aqueous Crude Extract of Cyanobacteria During Embryonal Development in Carp (Cyprinus carpio L.). <i>Acta Veterinaria Brno</i> , 2007 , 76, 291-299	0.8	6

LIST OF PUBLICATIONS

Cyanobacterial lipopeptides puwainaphycins and minutissamides induce disruptive and pro-inflammatory processes in Caco-2 human intestinal barrier model. <i>Harmful Algae</i> , 2020 , 96, 101849	5.3	4	
Cyanobacteria and microcystin contamination in untreated and treated drinking water in Ghana. <i>Advances in Oceanography and Limnology</i> , 2017 , 8,	1.3	4	
Chlorination and ozonation reduce microcystin content and tumour promoting activity of complex cyanobacterial extract. <i>Advances in Oceanography and Limnology</i> , 2017 , 8,	1.3	4	
Ready to go 3D? A semi-automated protocol for microwell spheroid arrays to increase scalability and throughput of 3D cell culture testing. <i>Toxicology Mechanisms and Methods</i> , 2020 , 30, 590-604	3.6	4	
Structure-Dependent Effects of Phthalates on Intercellular and Intracellular Communication in Liver Oval Cells. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	4	
Assessment of Chemical Impact of Invasive Bryozoan Pectinatella magnifica on the Environment: Cytotoxicity and Antimicrobial Activity of P. magnifica Extracts. <i>Molecules</i> , 2016 , 21,	4.8	4	
Freshwater Cyanotoxin Cylindrospermopsin Has Detrimental Stage-specific Effects on Hepatic Differentiation From Human Embryonic Stem Cells. <i>Toxicological Sciences</i> , 2019 , 168, 241-251	4.4	4	
Branched Poly(ethylene imine)s as Anti-algal and Anti-cyanobacterial Agents with Selective Flocculation Behavior to Cyanobacteria over Algae. <i>Macromolecular Bioscience</i> , 2018 , 18, e1800187	5.5	4	
Airborne PAHs inhibit gap junctional intercellular communication and activate MAPKs in human bronchial epithelial cell line. <i>Environmental Toxicology and Pharmacology</i> , 2020 , 79, 103422	5.8	3	
Photodynamic effects of 31 different phthalocyanines on a human keratinocyte cell line. <i>Chemosphere</i> , 2013 , 93, 870-4	8.4	3	
Effects of Cyanobacterial Toxins on the Human Gastrointestinal Tract and the Mucosal Innate Immune System		3	
Treatment of cylindrospermopsin by hydroxyl and sulfate radicals: Does degradation equal detoxification?. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127447	12.8	2	
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	2	
Occurrence of cylindrospermopsin, anatoxin-a and their homologs in the southern Czech Republic - Taxonomical, analytical, and molecular approaches. <i>Harmful Algae</i> , 2021 , 108, 102101	5.3	2	
Synthetic Biomimetic Polymethacrylates: Promising Platform for the Design of Anti-Cyanobacterial and Anti-Algal Agents. <i>Polymers</i> , 2021 , 13,	4.5	1	
Endocrine-disrupting chemicals affect sertoli TM4 cell functionality through dysregulation of gap junctional intercellular communication in vitro <i>Food and Chemical Toxicology</i> , 2022 , 113004	4.7	1	
In vitro testicular toxicity of environmentally relevant endocrine-disrupting chemicals: 2D vs. 3D models of prepubertal Leydig TM3 cells <i>Environmental Toxicology and Pharmacology</i> , 2022 , 103869	5.8	О	
	Cyanobacteria and microcystin contamination in untreated and treated drinking water in Ghana. Advances in Oceanography and Limnology, 2017, 8. Chlorination and ozonation reduce microcystin content and tumour promoting activity of complex cyanobacterial extract. Advances in Oceanography and Limnology, 2017, 8, Ready to go 3D? A semi-automated protocol for microwell spheroid arrays to increase scalability and throughput of 3D cell culture testing. Toxicology Mechanisms and Methods, 2020, 30, 590-604 Structure-Dependent Effects of Phthalates on Intercellular and Intracellular Communication in Liver Oval Cells. International Journal of Molecular Sciences, 2020, 21, Assessment of Chemical Impact of Invasive Bryozoan Pectinatella magnifica on the Environment: Cytotoxicity and Antimicrobial Activity of P. magnifica Extracts. Molecules, 2016, 21, Freshwater Cyanotoxin Cylindrospermopsin Has Detrimental Stage-specific Effects on Hepatic Differentiation From Human Embryonic Stem Cells. Toxicological Sciences, 2019, 168, 241-251 Branched Poly(ethylene imine)s as Anti-algal and Anti-cyanobacterial Agents with Selective Flocculation Behavior to Cyanobacteria over Algae. Macromolecular Bioscience, 2018, 18, e1800187 Airborne PAHs inhibit gap junctional intercellular communication and activate MAPKs in human bronchial epithelial cell line. Environmental Toxicology and Pharmacology, 2020, 79, 103422 Photodynamic effects of 31 different phthalocyanines on a human keratinocyte cell line. Chemosphere, 2013, 93, 870-4 Effects of Cyanobacterial Toxins on the Human Gastrointestinal Tract and the Mucosal Innate Immune System Treatment of cylindrospermopsin, anatoxin-a and their homologs in the southern Czech Republic-Taxonomical, analytical, and molecular approaches. Harmful Algae, 2021, 108, 102101 Synthetic Biomimetic Polymethacrylates: Promising Platform for the Design of Anti-Cyanobacterial and Anti-Algal Agents. Polymers, 2021, 13, Endocrine-disrupting chemicals affect sertoli TM4 cell functionality through dysregul	Cyanobacteria and microcystin contamination in untreated and treated drinking water in Ghana. Advances in Oceanography and Limnology, 2017, 8, Chlorination and ozonation reduce microcystin content and tumour promoting activity of complex cyanobacterial extract. Advances in Oceanography and Limnology, 2017, 8, Ready to go 3D? A semi-automated protocol for microwell spheroid arrays to increase scalability and throughput of 3D cell culture testing. Toxicology Mechanisms and Methods, 2020, 30, 590-604 Structure-Dependent Effects of Phthalates on Intercellular and Intracellular Communication in Liver Oval Cells. International Journal of Molecular Sciences, 2020, 21, Assessment of Chemical Impact of Invasive Bryozoan Pectinatella magnifica on the Environment: Cytotoxicity and Antimicrobial Activity of P. magnifica Extracts. Molecules, 2016, 21, Freshwater Cyanotoxin Cylindrospermopsin Has Detrimental Stage-specific Effects on Hepatic Differentiation From Human Embryonic Stem Cells. Toxicological Sciences, 2019, 168, 241-251 Branched Poly(ethylene imine)s as Anti-algal and Anti-cyanobacterial Agents with Selective Flocculation Behavior to Cyanobacteria over Algae. Macromolecular Bioscience, 2018, 18, e1800187 Airborne PAHs Inhibit gap junctional intercellular communication and activate MAPKs in human bronchial epithelial cell line. Environmental Toxicology and Pharmacology, 2020, 79, 103422 Photodynamic effects of 31 different phthalocyanines on a human keratinocyte cell line. Chemosphere, 2013, 93, 870-4 Effects of Cyanobacterial Toxins on the Human Gastrointestinal Tract and the Mucosal Innate Immune System Treatment of cylindrospermopsin by hydroxyl and sulfate radicals: Does degradation equal detoxification?, Journal of Hazardous Materials, 2022, 424, 127447 Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. International Journal of Molecular Sciences, 2021, 122, Occurrence of cylindrospermopsin, anatoxin-a and their homologs in the southern Czech Republic-Taxon	Cyanobacteria and microcystin contamination in untreated and treated drinking water in Ghana. Advances in Oceanography and Limnology, 2017, 8, Chlorination and ozonation reduce microcystin content and tumour promoting activity of complex cyanobacterial extract. Advances in Oceanography and Limnology, 2017, 8, Ready to go 3D? A semi-automated protocol for microwell spheroid arrays to increase scalability and throughput of 3D cell culture testing. Toxicology Mechanisms and Methods, 2020, 30, 590-604 36 4 Structure-Dependent Effects of Phthalates on Intercellular and Intracellular Communication in Liver Oval Cells. International Journal of Molecular Sciences, 2020, 21, Assessment of Chemical Impact of Invasive Bryozoan Pectinatella magnifica on the Environment: Cytotoxicity and Antimicrobial Activity of P. magnifica Extracts. Molecules, 2016, 21, Freshwater Cyanotoxin Cylindrospermopsin Has Detrimental Stage-specific Effects on Hepatic Differentiation From Human Embryonic Stem Cells. Toxicological Sciences, 2019, 168, 241-251 Airborne PAHs inhibit gap junctional intercellular communication and activate MAPKs in human bronchial epithelial cell line. Environmental Toxicology and Pharmacology, 2020, 79, 103422 Photodynamic effects of 31 different phthalocyanines on a human keratinocyte cell line. Chemosphere, 2013, 93, 870-4 Effects of Cyanobacterial Toxins on the Human Gastrointestinal Tract and the Mucosal Innate Immune System Treatment of cylindrospermopsin, by hydroxyl and sulfate radicals: Does degradation equal detoxifications. Journal of Hazardous Materials, 2022, 424, 127447 Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. International Journal of Molecular Sciences, 2021, 22, Occurrence of cylindrospermopsin, nantoxin-a and their homologs in the southern Czech Republic-Taxonomical, analytical, and molecular approaches. Harmful Algae, 2021, 108, 102101 53 2 Synthetic Biomimetic Polymenta, 2021, 13, Endocrine-disrupting chemicals affect sertoli TMA cell