
Salete S Balula And Maria S Balula And I

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6694562/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic oxidative desulfurization systems based on Keggin phosphotungstate and metal-organic framework MIL-101. Fuel Processing Technology, 2013, 116, 350-357.	7.2	154
2	An efficient oxidative desulfurization process using terbium-polyoxometalate@MIL-101(Cr). Catalysis Science and Technology, 2013, 3, 2404.	4.1	135
3	Desulfurization of model diesel by extraction/oxidation using a zinc-substituted polyoxometalate as catalyst under homogeneous and heterogeneous (MIL-101(Cr) encapsulated) conditions. Fuel Processing Technology, 2015, 131, 78-86.	7.2	125
4	Production of ultra-deep sulfur-free diesels using a sustainable catalytic system based on UiO-66(Zr). Chemical Communications, 2015, 51, 13818-13821.	4.1	107
5	Catalytic oxidative/extractive desulfurization of model and untreated diesel using hybrid based zinc-substituted polyoxometalates. Fuel, 2016, 166, 268-275.	6.4	106
6	Monovacant polyoxometalates incorporated into MIL-101(Cr): novel heterogeneous catalysts for liquid phase oxidation. Applied Catalysis A: General, 2013, 453, 316-326.	4.3	103
7	Deep oxidative desulfurization of diesel fuels using homogeneous and SBA-15-supported peroxophosphotungstate catalysts. Fuel, 2019, 241, 616-624.	6.4	100
8	Novel Composite Material Polyoxovanadate@MIL-101(Cr): A Highly Efficient Electrocatalyst for Ascorbic Acid Oxidation. ACS Applied Materials & amp; Interfaces, 2013, 5, 13382-13390.	8.0	99
9	Influence of a porous MOF support on the catalytic performance of Eu-polyoxometalate based materials: desulfurization of a model diesel. Catalysis Science and Technology, 2016, 6, 1515-1522.	4.1	92
10	Catalytic performance and electrochemical behaviour of Metal–organic frameworks: MIL-101(Fe) versus NH2-MIL-101(Fe). Polyhedron, 2017, 127, 464-470.	2.2	82
11	Oxidative catalytic versatility of a trivacant polyoxotungstate incorporated into MIL-101(Cr). Catalysis Science and Technology, 2014, 4, 1416.	4.1	79
12	Advanced framework-modified POM@ZIF-67 nanocomposites as enhanced oxygen evolution reaction electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 13509-13521.	10.3	78
13	Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process. Dalton Transactions, 2014, 43, 9518-9528.	3.3	72
14	Efficient heterogeneous polyoxometalate-hybrid catalysts for the oxidative desulfurization of fuels. Catalysis Communications, 2018, 104, 1-8.	3.3	67
15	Electrochemical Behaviour of First Row Transition Metal Substituted Polyoxotungstates: A Comparative Study in Acetonitrile. European Journal of Inorganic Chemistry, 2004, 2004, 619-628.	2.0	66
16	Association of Keggin-type anions with cationic meso-substituted porphyrins: synthesis, characterization and oxidative catalytic studies. Journal of Molecular Catalysis A, 2005, 231, 35-45.	4.8	62
17	Desulfurization of liquid fuels by extraction and sulfoxidation using H2O2 and [CpMo(CO)3R] as catalysts. Applied Catalysis B: Environmental, 2018, 230, 177-183.	20.2	62
18	Oxygen Evolution Reaction Electrocatalytic Improvement in POM@ZIF Nanocomposites: A Bidirectional Synergistic Effect. ACS Applied Energy Materials, 2020, 3, 2925-2934.	5.1	62

#	Article	IF	CITATIONS
19	Noble-Metal-Free MOF-74-Derived Nanocarbons: Insights on Metal Composition and Doping Effects on the Electrocatalytic Activity Toward Oxygen Reactions. ACS Applied Energy Materials, 2019, 2, 1854-1867.	5.1	60
20	Synthesis and catalytic properties in olefin epoxidation of dioxomolybdenum(vi) complexes bearing a bidentate or tetradentate salen-type ligand. Journal of Molecular Catalysis A, 2007, 270, 185-194.	4.8	58
21	Multifunctional catalyst based on sandwich-type polyoxotungstate and MIL-101 for liquid phase oxidations. Catalysis Today, 2013, 210, 142-148.	4.4	56
22	Oxidative desulfurization strategies using Keggin-type polyoxometalate catalysts: Biphasic versus solvent-free systems. Catalysis Today, 2019, 333, 226-236.	4.4	53
23	A comparative study between Keggin-type tungstophosphates and tungstosilicates in the oxidation of cyclooctane with hydrogen peroxide. Journal of Molecular Catalysis A, 2004, 222, 159-165.	4.8	52
24	New chloro and triphenylsiloxy derivatives of dioxomolybdenum(VI) chelated with pyrazolylpyridine ligands: Catalytic applications in olefin epoxidation. Journal of Molecular Catalysis A, 2007, 261, 79-87.	4.8	52
25	Phosphotungstates as catalysts for monoterpenes oxidation: Homo- and heterogeneous performance. Catalysis Today, 2013, 203, 95-102.	4.4	52
26	Chemistry and Catalytic Activity of Molybdenum(VI)-Pyrazolylpyridine Complexes in Olefin Epoxidation. Crystal Structures of Monomeric Dioxo, Dioxo-1¼-oxo, and Oxodiperoxo Derivatives. Inorganic Chemistry, 2011, 50, 525-538.	4.0	50
27	A Highly Efficient Dioxo(μ-oxo)molybdenum(VI) Dimer Catalyst for Olefin Epoxidation. Inorganic Chemistry, 2007, 46, 8508-8510.	4.0	46
28	Zincâ€Substituted Polyoxotungstate@aminoâ€MILâ€101(Al) – An Efficient Catalyst for the Sustainable Desulfurization of Model and Real Diesels. European Journal of Inorganic Chemistry, 2016, 2016, 5114-5122.	2.0	46
29	Novel heterogeneous catalysts based on lanthanopolyoxometalates supported on MIL-101(Cr). Catalysis Today, 2013, 218-219, 35-42.	4.4	45
30	Synthesis and Catalytic Properties of Molybdenum(VI) Complexes with Tris(3,5-dimethyl-1-pyrazolyl)methane. Inorganic Chemistry, 2011, 50, 3490-3500.	4.0	44
31	Lanthanopolyoxometalates: From the structure of polyanions to the design of functional materials. Polyhedron, 2013, 52, 10-24.	2.2	43
32	Comparison of liquid-phase olefin epoxidation catalysed by dichlorobis-(dimethylformamide)dioxomolybdenum(VI) in homogeneous phase and grafted onto MCM-41. Journal of Molecular Catalysis A, 2009, 297, 110-117.	4.8	42
33	Efficient eco-sustainable ionic liquid-polyoxometalate desulfurization processes for model and real diesel. Applied Catalysis A: General, 2017, 537, 93-99.	4.3	41
34	Metalâ€Organic Frameworkâ€Based Catalysts for Oxidative Desulfurization. ChemCatChem, 2020, 12, 4721-4731.	3.7	40
35	Mesoporous nanosilica-supported polyoxomolybdate as catalysts for sustainable desulfurization. Microporous and Mesoporous Materials, 2019, 275, 163-171.	4.4	39
36	Desulfurization process conciliating heterogeneous oxidation and liquid extraction: Organic solvent or centrifugation/water?. Applied Catalysis A: General, 2017, 542, 359-367.	4.3	37

#	Article	IF	CITATIONS
37	Large-pore silica spheres as support for samarium-coordinated undecamolybdophosphate: Oxidative desulfurization of diesels. Fuel, 2020, 259, 116213.	6.4	37
38	An Effective Magnetic Catalyst for Oxidative Desulfurization of Model and Real Fuels: Fe3O4/ZIF-8/TiOâ,,. Microporous and Mesoporous Materials, 2021, 317, 110992.	4.4	37
39	Improving the Catalytic Performance of Keggin [PW12O40]3â^ for Oxidative Desulfurization: Ionic Liquids versus SBA-15 Composite. Materials, 2018, 11, 1196.	2.9	36
40	Sandwich-type tungstophosphates in the catalytic oxidation of cycloalkanes with hydrogen peroxide. Journal of Molecular Catalysis A, 2007, 262, 41-47.	4.8	35
41	Mono-substituted silicotungstates as active catalysts for sustainable oxidations: homo- and heterogeneous performance. New Journal of Chemistry, 2013, 37, 2341.	2.8	35
42	A recyclable ionic liquid-oxomolybdenum(<scp>vi</scp>) catalytic system for the oxidative desulfurization of model and real diesel fuel. Dalton Transactions, 2016, 45, 15242-15248.	3.3	34
43	Straightforward activation of metal-organic framework UiO-66 for oxidative desulfurization processes. Catalysis Today, 2021, 362, 28-34.	4.4	34
44	Catalytic olefin epoxidation with cationic molybdenum(VI) cis-dioxo complexes and ionic liquids. Applied Catalysis A: General, 2010, 372, 67-72.	4.3	33
45	An efficient eco-sustainable oxidative desulfurization process using μ-oxo-bridged Fe(III) complex of meso-tetrakis(pentafluorophenyl)porphyrin. Applied Catalysis A: General, 2014, 478, 267-274.	4.3	33
46	Insights into the electrochemical behaviour of composite materials: Monovacant polyoxometalates @ porous metal-organic framework. Electrochimica Acta, 2013, 87, 853-859.	5.2	32
47	Structural Studies of Keggin-Type Polyoxotungstates by Extended X-ray Absorption Fine Structure Spectroscopy. European Journal of Inorganic Chemistry, 2007, 2007, 1027-1038.	2.0	31
48	Novel binuclear Cu(II) complexes combining a semicarbazone Schiff base with distinct bridging ligands: Structure and antimicrobial activity. Polyhedron, 2013, 57, 118-126.	2.2	31
49	Liquid-phase oxidation catalysed by copper(II) immobilised in a pillared layered double hydroxide. Journal of Molecular Catalysis A, 2009, 312, 23-30.	4.8	30
50	Efficient Oxidative Desulfurization Processes Using Polyoxomolybdate Based Catalysts. Energies, 2018, 11, 1696.	3.1	29
51	Synthesis and catalytic properties in olefin epoxidation of chiral oxazoline dioxomolybdenum(VI) complexes. Journal of Molecular Catalysis A, 2006, 260, 11-18.	4.8	28
52	Grafting of Molecularly Ordered Mesoporous Phenyleneâ€Silica with Molybdenum Carbonyl Complexes: Efficient Heterogeneous Catalysts for the Epoxidation of Olefins. Advanced Synthesis and Catalysis, 2010, 352, 1759-1769.	4.3	28
53	Effect on selective adsorption of ethane and ethylene of the polyoxometalates impregnation in the metal-organic framework MIL-101. Adsorption, 2014, 20, 533-543.	3.0	27
54	Novel pseudohalide-bridged Cu(II) complexes with a hydrazone ligand: Evaluation of antimicrobial activity. Polyhedron, 2014, 80, 166-172.	2.2	27

#	Article	IF	CITATIONS
55	Oxidation of cycloalkanes with hydrogen peroxide in the presence of Keggin-type polyoxotungstates. Catalysis Today, 2004, 91-92, 211-214.	4.4	26
56	Europium Polyoxometalates Encapsulated in Silica Nanoparticles – Characterization and Photoluminescence Studies. European Journal of Inorganic Chemistry, 2013, 2013, 2877-2886.	2.0	26
57	Sustainable Desulfurization Processes Catalyzed by Titanium-Polyoxometalate@TM-SBA-15. Topics in Catalysis, 2017, 60, 1140-1150.	2.8	25
58	Influence of UiO-66(Zr) Preparation Strategies in Its Catalytic Efficiency for Desulfurization Process. Materials, 2019, 12, 3009.	2.9	25
59	Desulfurization of diesel by extraction coupled with Mo-catalyzed sulfoxidation in polyethylene glycol-based deep eutectic solvents. Journal of Molecular Liquids, 2020, 309, 113093.	4.9	25
60	Influence of Cyclodextrins on Catalytic Olefin Epoxidation with Metal–Carbonyl Compounds. Crystal Structure of the TRIMEB Complex with CpFe(CO) ₂ Cl. Organometallics, 2007, 26, 6857-6863.	2.3	24
61	Hybrid layer-by-layer films based on lanthanide-bridged silicotungstates and poly(ethylenimine). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 302-309.	4.7	21
62	Dinuclear Lanthanide(III) Complexes by Metal-Ion-Assisted Hydration of Di-2-pyridyl Ketone Azine. Inorganic Chemistry, 2013, 52, 4145-4147.	4.0	21
63	A novel red emitting material based on polyoxometalate@periodic mesoporous organosilica. Microporous and Mesoporous Materials, 2016, 234, 248-256.	4.4	21
64	Synthesis and characterisation of novel ruthenium multi-substituted polyoxometalates: α,β-[SiW9O37Ru4(H2O)3Cl3]7â^'. Polyhedron, 2010, 29, 3066-3073.	2.2	20
65	Epoxidation of olefins using a dichlorodioxomolybdenum(VI)-pyridylimine complex as catalyst. Inorganica Chimica Acta, 2012, 387, 234-239.	2.4	20
66	Polyoxomolybdate based ionic-liquids as active catalysts for oxidative desulfurization of simulated diesel. Polyhedron, 2019, 170, 762-770.	2.2	20
67	Catalytic Properties of the Dioxomolybdenum Siloxide MoO2(OSiPh3)2 and its 2,2'-Bipyridine Adduct MoO2(OSiPh3)2(bpy). Molecules, 2006, 11, 298-308.	3.8	19
68	Synthesis, crystal structures, spectroscopic and electrochemical studies on Cu(II) and Ni(II) complexes with compartmental nitrogen–oxygen mixed donor ligands. Polyhedron, 2014, 80, 41-46.	2.2	19
69	Improved catalytic performance of porous metal–organic frameworks for the ring opening of styrene oxide. CrystEngComm, 2017, 19, 4219-4226.	2.6	19
70	A sustainable peroxophosphomolybdate/H2O2 system for the oxidative removal of organosulfur compounds from simulated and real high-sulfur diesels. Applied Catalysis A: General, 2020, 589, 117154.	4.3	19
71	An Effective Hybrid Heterogeneous Catalyst to Desulfurize Diesel: Peroxotungstate@Metal–Organic Framework. Molecules, 2020, 25, 5494.	3.8	17
72	lsomerization of glucose to fructose catalyzed by metal–organic frameworks. Sustainable Energy and Fuels, 2021, 5, 3847-3857.	4.9	17

#	Article	IF	CITATIONS
73	Unusual electrochemical reduction of copper(II) to copper(I) in polyoxotungstates. Electrochemistry Communications, 2003, 5, 378-382.	4.7	16
74	Electrochemical characterization of glassy carbon electrodes modified with hybrid inorganic-organic single-layer of α-Keggin type polyoxotungstates. Journal of Solid State Electrochemistry, 2006, 10, 10-17.	2.5	15
75	Catalytic performance of a boron peroxotungstate complex under homogeneous and heterogeneous conditions. Catalysis Today, 2013, 203, 87-94.	4.4	15
76	SiW ₁₁ Fe@MILâ€101(Cr) Composite: A Novel and Versatile Electrocatalyst. ChemElectroChem, 2014, 1, 1293-1300.	3.4	15
77	Polyoxometalate@Periodic mesoporous organosilicas as active materials for oxidative desulfurization of diesels. Microporous and Mesoporous Materials, 2020, 302, 110193.	4.4	15
78	Cobalt(<scp>iii</scp>) sepulchrate complexes: application as sustainable oxidative catalysts. New Journal of Chemistry, 2014, 38, 2500-2507.	2.8	13
79	Complexation of crystal-like mesoporous phenylene-silica with Cr(CO)3 and catalytic performance in the oxidation of cyclooctene. Journal of Molecular Catalysis A, 2010, 332, 13-18.	4.8	12
80	Multifunctionality in Two Families of Dinuclear Lanthanide(III) Complexes with a Tridentate Schiff-Base Ligand. Inorganic Chemistry, 2019, 58, 9581-9585.	4.0	12
81	Effective Zinc-Substituted Keggin Composite To Catalyze the Removal of Sulfur from Real Diesels under a Solvent-Free System. Industrial & Engineering Chemistry Research, 2019, 58, 18540-18549.	3.7	12
82	High Catalytic Efficiency of a Layered Coordination Polymer to Remove Simultaneous Sulfur and Nitrogen Compounds from Fuels. Catalysts, 2020, 10, 731.	3.5	12
83	Cobalt aluminate nanoparticles supported on MIL-101 structure: catalytic performance investigation. RSC Advances, 2015, 5, 4175-4183.	3.6	11
84	Dichlorodioxomolybdenum(VI) complexes bearing oxygen-donor ligands as catalysts for oxidative desulfurization of simulated and real diesel. Catalysis Communications, 2019, 128, 105704.	3.3	11
85	Desulfurization and Denitrogenation Processes to Treat Diesel Using Mo(VI)â€Bipyridine Catalysts. Chemical Engineering and Technology, 2020, 43, 1774-1783.	1.5	11
86	Synergistic combination of the nanoporous system of MOF-808 with a polyoxomolybdate to design an effective catalyst: simultaneous oxidative desulfurization and denitrogenation processes. Sustainable Energy and Fuels, 2021, 5, 4032-4040.	4.9	11
87	A simple desulfurization process to achieve high efficiency, sustainability and cost-effectivity via peroxotungstate catalyst. Molecular Catalysis, 2021, 505, 111515.	2.0	11
88	Desulfurization of model and real fuels by extraction and oxidation processes using an indenylmolybdenum tricarbonyl pre atalyst. Applied Organometallic Chemistry, 2020, 34, e5490.	3.5	10
89	Redox behaviour, electrochromic properties and photoluminescence of potassium lanthano phosphomolybdate sandwich-type compounds. RSC Advances, 2013, 3, 16697.	3.6	9
90	Synthesis, structure and electrochemistry behavior of a cobalt(III) compound with azide and methyl 2-pyridyl ketone semicarbazone ligands. Journal of Molecular Structure, 2013, 1045, 55-61.	3.6	9

#	Article	IF	CITATIONS
91	Lindqvist versus Keggin-Type Polyoxometalates as Catalysts for Effective Desulfurization of Fuels. Catalysts, 2022, 12, 581.	3.5	9
92	Removing Simultaneously Sulfur and Nitrogen from Fuel under a Sustainable Oxidative Catalytic System. Sustainable Chemistry, 2021, 2, 382-391.	4.7	8
93	Hf-Based UiO-66 as Adsorptive Compound and Oxidative Catalyst for Denitrogenation Processes. Compounds, 2021, 1, 3-14.	1.9	8
94	lonic Liquid-Based Polyoxometalate Incorporated at ZIF-8: A Sustainable Catalyst to Combine Desulfurization and Denitrogenation Processes. Molecules, 2022, 27, 1711.	3.8	8
95	Mesoporous Silica vs. Organosilica Composites to Desulfurize Diesel. Frontiers in Chemistry, 2019, 7, 756.	3.6	7
96	Vanadium C-scorpionate supported on mesoporous aptes-functionalized SBA-15 as catalyst for the peroxidative oxidation of benzyl alcohol. Microporous and Mesoporous Materials, 2021, 320, 111111.	4.4	7
97	Oneâ€Pot Conversion of Glucose into 5â€Hydroxymethylfurfural using MOFs and BrÃ,nstedâ€Acid Tandem Catalysts. Advanced Sustainable Systems, 2022, 6, .	5.3	7
98	Sandwich lanthano-silicotungstates: Structure, electrochemistry and photoluminescence properties. Polyhedron, 2013, 52, 308-314.	2.2	6
99	A lanthanum(III) complex with a lacunary polyoxotungstate: Na2(NH4)7[La(W5O18)2]·16H2O. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, i28-i31.	0.2	5
100	Structural and Catalytic Studies of a Trimethyltin Vanadate Coordination Polymer. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 215-222.	3.7	5
101	Polyoxometalatesâ€Based Ionic Liquids (POMsâ€ILs) for Electrochemical Applications. ChemistrySelect, 2020, 5, 12266-12271.	1.5	5
102	A New Insight into the Oxidation of Cyclododecane with Hydrogen Peroxide in the Presence of Iron-Substituted Polyoxotungstates. Synlett, 2008, 2008, 1623-1626.	1.8	4
103	Solvent-Free Desulfurization System to Produce Low-Sulfur Diesel Using Hybrid Monovacant Keggin-Type Catalyst. Molecules, 2020, 25, 4961.	3.8	4
104	Vanadium(V) complexes supported on porous MIL-100(Fe) as catalysts for the selective oxidation of toluene. Microporous and Mesoporous Materials, 2022, 341, 112091.	4.4	4
105	Characterization of a <i>μ</i> â€oxoâ€bridged diiron porphyrin by ESI‣TQâ€Orbitrapâ€MS. Journal of Mass Spectrometry, 2014, 49, 763-765.	1.6	3
106	Membrane-Supported Layered Coordination Polymer as an Advanced Sustainable Catalyst for Desulfurization. Molecules, 2021, 26, 2404.	3.8	3
107	Dichloro and dimethyl dioxomolybdenum(VI)-bipyridine complexes as catalysts for oxidative desulfurization of dibenzothiophene derivatives under extractive conditions. Journal of Organometallic Chemistry, 2022, 967, 122336.	1.8	3
108	Catalytic Performance of Copper-Substituted Polyoxotungstate Materials and X-Ray Structure of a New Sandwich-Type Compound. Materials Science Forum, 0, 587-588, 538-542.	0.3	1

#	Article	IF	CITATIONS
109	Porous Metal-Organic Framework Materials: Microwave Assisted Synthesis and Oxidative Catalytic Tests. Materials Science Forum, 0, 730-732, 1024-1029.	0.3	1
110	Polyoxometalates-Based Nanocatalysts for Production of Sulfur-Free Diesel. Advances in Chemical and Materials Engineering Book Series, 2016, , 426-458.	0.3	1
111	Manganese Mono-Substituted Borotungstate: Characterization and Catalytic Application. Materials Science Forum, 2012, 730-732, 975-980.	0.3	0
112	Polyoxometalates-Based Nanocatalysts and Their Efficiency for Production of Sulfur-Free Diesel. Advances in Chemical and Materials Engineering Book Series, 2020, , 92-133.	0.3	0