Gert Jan Kramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6694286/publications.pdf

Version: 2024-02-01

49 papers

6,530 citations

33 h-index 214800 47 g-index

49 all docs 49 docs citations

times ranked

49

6326 citing authors

#	Article	IF	CITATIONS
1	The climate resilience cycle: Using scenario analysis to inform climateâ€resilient business strategies. Business Strategy and the Environment, 2022, 31, 1763-1775.	14.3	9
2	Comment on "How green is blue hydrogen?― Energy Science and Engineering, 2022, 10, 1944-1954.	4.0	23
3	Optimal hydrogen production in a wind-dominated zero-emission energy system. Advances in Applied Energy, 2021, 3, 100032.	13.2	36
4	Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage. Renewable and Sustainable Energy Reviews, 2020, 121, 109629.	16.4	137
5	Risk Mitigation and Investability of a U-PHS Project in The Netherlands. Energies, 2020, 13, 5072.	3.1	1
6	A critical view on the current application of LCA for new technologies and recommendations for improved practice. Journal of Cleaner Production, 2020, 259, 120904.	9.3	151
7	Evaluation of a Direct Air Capture Process Combining Wet Scrubbing and Bipolar Membrane Electrodialysis. Industrial & Engineering Chemistry Research, 2020, 59, 7007-7020.	3.7	67
8	Why fully liberalised electricity markets will fail to meet deep decarbonisation targets even with strong carbon pricing. Energy Policy, 2019, 131, 99-110.	8.8	32
9	The renaissance of the Sabatier reaction and its applications on Earth and in space. Nature Catalysis, 2019, 2, 188-197.	34.4	369
10	Potential and challenges of low-carbon energy options: Comparative assessment of alternative fuels for the transport sector. Applied Energy, 2019, 236, 590-606.	10.1	92
11	Energy scenariosâ€"Exploring disruption and innovation. Energy Research and Social Science, 2018, 37, 247-250.	6.4	15
12	Novel Indicators for the Quantification of Resilience in Critical Material Supply Chains, with a 2010 Rare Earth Crisis Case Study. Environmental Science & Earth Crisis Case Study. Env	10.0	57
13	A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO ₂ versus MEA-Based Postcombustion Capture. Environmental Science & Envi	10.0	49
14	Framework for Resilience in Material Supply Chains, With a Case Study from the 2010 Rare Earth Crisis. Environmental Science &	10.0	117
15	Recycling Potential of Neodymium: The Case of Computer Hard Disk Drives. Environmental Science & Disk Drives. Environmental Science	10.0	117
16	Energy and Climate Impacts of Producing Synthetic Hydrocarbon Fuels from CO ₂ . Environmental Science & Environmental	10.0	126
17	Life Cycle Inventory of the Production of Rare Earths and the Subsequent Production of NdFeB Rare Earth Permanent Magnets. Environmental Science & Earth Permanent Magnets. Environmental Science & Earth Permanent Magnets.	10.0	209
18	A Worrier's Guide to the Future. Gaia, 2014, 23, 125-126.	0.7	0

#	Article	IF	CITATIONS
19	Challenges for Industrial Ecology in Practice and Theory. Journal of Industrial Ecology, 2011, 15, 677-679.	5.5	2
20	Metal requirements of low-carbon power generation. Energy, 2011, 36, 5640-5648.	8.8	181
21	Cryogenic <mml:math altimg="si31.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>CO</mml:mi></mml:mrow><mml:mrow><mml:mn>2<td>nml3.8n><!--</td--><td>/mml!mrow></td></td></mml:mn></mml:mrow></mml:msub></mml:math>	nml3 .8 n> </td <td>/mml!mrow></td>	/mml!mrow>
22	capture using dynamically operated packed beds. Chemical Engineering Science, 2010, 65, 114-119. A multi-level perspective on the introduction of hydrogen and battery-electric vehicles. Technological Forecasting and Social Change, 2010, 77, 529-540.	11.6	184
23	Multiscale modeling of interaction of alane clusters on Al(111) surfaces: A reactive force field and infrared absorption spectroscopy approach. Journal of Chemical Physics, 2010, 132, 084509.	3.0	5
24	No quick switch to low-carbon energy. Nature, 2009, 462, 568-569.	27.8	196
25	Parametrization of a reactive force field for aluminum hydride. Journal of Chemical Physics, 2009, 131, 044501.	3.0	35
26	An ab initio study of possible pathways in the thermal decomposition of NaAlH4. Journal of Solid State Chemistry, 2008, 181, 3037-3043.	2.9	10
27	Predictions of melting, crystallization, and local atomic arrangements of aluminum clusters using a reactive force field. Journal of Chemical Physics, 2008, 129, 244506.	3.0	47
28	Modeling the sorption dynamics of NaH using a reactive force field. Journal of Chemical Physics, 2008, 128, 164714.	3.0	29
29	Surface segregation in Pt25Rh75 alloys studied by Monte Carlo simulations and the modified embedded atom method. Surface Science, 2007, 601, 1668-1676.	1.9	13
30	Construction of modified embedded atom method potentials for Cu, Pt and Cu–Pt and modelling surface segregation in Cu3Pt alloys. Surface Science, 2007, 601, 2952-2961.	1.9	13
31	Energetics of methane dissociative adsorption on Rh{111} from DFT calculations. Journal of Catalysis, 2006, 242, 309-318.	6.2	90
32	Effect of Sulphur and Silicon in Fuels on an Automotive Reforming Catalyst. , 2005, , .		1
33	Shortcut model for water-balanced operation in fuel processor fuel cell systems. Journal of Power Sources, 2004, 138, 156-161.	7.8	7
34	The influence of electronic structure on hydrogen absorption in palladium alloys. Journal of Physics Condensed Matter, 2004, 16, 6267-6277.	1.8	75
35	Two-section reactor model for autothermal reforming of methane to synthesis gas. AICHE Journal, 2003, 49, 1827-1837.	3.6	34
36	Absorption and diffusion of hydrogen in palladium-silver alloys by density functional theory. Physical Review B, 2002, 66, .	3.2	57

#	Article	IF	CITATIONS
37	Mechanisms for Chain Growth in Fischer–Tropsch Synthesis over Ru(0001). Journal of Catalysis, 2002, 212, 136-144.	6.2	119
38	Fischer–Tropsch technology — from active site to commercial process. Applied Catalysis A: General, 1999, 186, 27-40.	4.3	129
39	Zeolite Structure and Reactivity by Combined Quantum-Chemicalâ°Classical Calculations. Journal of Physical Chemistry B, 1999, 103, 6133-6141.	2.6	343
40	Mechanisms of Hydrocarbon Conversion in Zeolites: A Quantum Mechanical Study. Journal of Catalysis, 1997, 170, 1-10.	6.2	181
41	Reactivity Theory of Zeolitic Broensted Acidic Sites. Chemical Reviews, 1995, 95, 637-660.	47.7	575
42	An ab Initio Study of D/H Exchange between CD4 and the H-Forms of Zeolites FAU and MFI. Journal of the American Chemical Society, 1995, 117, 1766-1776.	13.7	113
43	Understanding the acid behaviour of zeolites from theory and experiment. Nature, 1993, 363, 529-531.	27.8	302
44	Theoretical determination of proton affinity differences in zeolites. Journal of the American Chemical Society, 1993, 115, 2887-2897.	13.7	146
45	Interatomic force fields for silicas, aluminophosphates, and zeolites: Derivation based onab initiocalculations. Physical Review B, 1991, 43, 5068-5080.	3.2	238
46	Zeolites versus aluminosilicate clusters: the validity of a local description. Journal of the American Chemical Society, 1991, 113, 6435-6441.	13.7	181
47	Force fields for silicas and aluminophosphates based onab initiocalculations. Physical Review Letters, 1990, 64, 1955-1958.	7.8	1,366
48	Suppression of the Peierls Transition in MEM(TCNQ)2 Through Doping With METM. Molecular Crystals and Liquid Crystals, 1985, 120, 173-177.	0.8	5
49	The 1-D Hubbard Model With Alternating Crystal Potential Comparision With Experiments on DMM-TCBQ ₂ . Molecular Crystals and Liquid Crystals, 1985, 120, 153-156.	0.8	4