List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6694197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Diversity, 2022, 114, 539-547.	12.3	94
2	Actinobacterial Strains as Genomic Candidates for Characterization of Genes Encoding Enzymes in Bioconversion of Lignocellulose. Waste and Biomass Valorization, 2022, 13, 1523-1534.	3.4	6
3	Functional soil mycobiome across ecosystems. Journal of Proteomics, 2022, 252, 104428.	2.4	15
4	Successional development of wood-inhabiting fungi associated with dominant tree species in a natural temperate floodplain forest. Fungal Ecology, 2022, 59, 101116.	1.6	8
5	Yeasts from temperate forests. Yeast, 2022, 39, 4-24.	1.7	18
6	Microbial phylogenetic relatedness links to distinct successional patterns of bacterial and fungal communities. Environmental Microbiology, 2022, 24, 3985-4000.	3.8	11
7	Composition and functioning of the soil microbiome in the highest altitudes of the Italian Alps and potential effects of climate change. FEMS Microbiology Ecology, 2022, 98, .	2.7	7
8	Soil compartments (bulk soil, litter, root and rhizosphere) as main drivers of soil protistan communities distribution in forests with different nitrogen deposition. Soil Biology and Biochemistry, 2022, 168, 108628.	8.8	19
9	The invasive tree Piper aduncum alters soil microbiota and nutrient content in fallow land following small scale slash-and-burn farming in tropical lowland forest in Papua New Guinea. Applied Soil Ecology, 2022, 176, 104487.	4.3	0
10	Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate. Frontiers in Microbiology, 2022, 13, 835274.	3.5	10
11	Specific utilization of biopolymers of plant and fungal origin reveals the existence of substrate-specific guilds for bacteria in temperate forest soils. Soil Biology and Biochemistry, 2022, 171, 108696.	8.8	7
12	Snags, logs, stumps, and microclimate as tools optimizing deadwood enrichment for forest biodiversity. Biological Conservation, 2022, 270, 109569.	4.1	11
13	Factors Controlling Dead Wood Decomposition in an Old-Growth Temperate Forest in Central Europe. Journal of Fungi (Basel, Switzerland), 2022, 8, 673.	3.5	11
14	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	17.5	457
15	Composition of soil bacterial and fungal communities in relation to vegetation composition and soil characteristics along an altitudinal gradient. FEMS Microbiology Ecology, 2021, 97, .	2.7	27
16	Termites Are Associated with External Species-Specific Bacterial Communities. Applied and Environmental Microbiology, 2021, 87, .	3.1	10
17	Litter-inhabiting fungi show high level of specialization towards biopolymers composing plant and fungal biomass. Biology and Fertility of Soils, 2021, 57, 77-88.	4.3	30
18	Explorative Meta-Analysis of 417 Extant Archaeal Genomes to Predict Their Contribution to the Total Microbiome Functionality. Microorganisms, 2021, 9, 381.	3.6	2

#	Article	IF	CITATIONS
19	Complementary Roles of Wood-Inhabiting Fungi and Bacteria Facilitate Deadwood Decomposition. MSystems, 2021, 6, .	3.8	71
20	Fungal Communities Are Important Determinants of Bacterial Community Composition in Deadwood. MSystems, 2021, 6, .	3.8	28
21	Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environmental Microbiology, 2021, 23, 5716-5732.	3.8	44
22	Niche differentiation of bacteria and fungi in carbon and nitrogen cycling of different habitats in a temperate coniferous forest: A metaproteomic approach. Soil Biology and Biochemistry, 2021, 155, 108170.	8.8	28
23	Genome-Resolved Metagenomics Is Essential for Unlocking the Microbial Black Box of the Soil. Trends in Microbiology, 2021, 29, 279-282.	7.7	11
24	Fungal diversity living in the root and sporophore of the endemic Korean fern Mankyua chejuense. Fungal Ecology, 2021, 50, 101038.	1.6	3
25	Successional Development of Fungal Communities Associated with Decomposing Deadwood in a Natural Mixed Temperate Forest. Journal of Fungi (Basel, Switzerland), 2021, 7, 412.	3.5	14
26	Dynamics of Soil Bacterial and Fungal Communities During the Secondary Succession Following Swidden Agriculture IN Lowland Forests. Frontiers in Microbiology, 2021, 12, 676251.	3.5	6
27	Ecological Divergence Within the Enterobacterial Genus Sodalis: From Insect Symbionts to Inhabitants of Decomposing Deadwood. Frontiers in Microbiology, 2021, 12, 668644.	3.5	11
28	Deadwood-Inhabiting Bacteria Show Adaptations to Changing Carbon and Nitrogen Availability During Decomposition. Frontiers in Microbiology, 2021, 12, 685303.	3.5	21
29	Microbial activity in alpine soils under climate change. Science of the Total Environment, 2021, 783, 147012.	8.0	28
30	Metagenomes, metatranscriptomes and microbiomes of naturally decomposing deadwood. Scientific Data, 2021, 8, 198.	5.3	6
31	Distribution of Soil Extracellular Enzymatic, Microbial, and Biological Functions in the C and N-Cycle Pathways Along a Forest Altitudinal Gradient. Frontiers in Microbiology, 2021, 12, 660603.	3.5	15
32	The contribution of insects to global forest deadwood decomposition. Nature, 2021, 597, 77-81.	27.8	123
33	Predictors of soil fungal biomass and community composition in temperate mountainous forests in Central Europe. Soil Biology and Biochemistry, 2021, 161, 108366.	8.8	17
34	Forest Microhabitat Affects Succession of Fungal Communities on Decomposing Fine Tree Roots. Frontiers in Microbiology, 2021, 12, 541583.	3.5	12
35	Temporal turnover of the soil microbiome composition is guildâ€specific. Ecology Letters, 2021, 24, 2726-2738.	6.4	21
36	A Different Point of View of Plant-Bacterial Interactions: RNA-Seq Analysis of a PGP Bacterial Endophyte Colonizing Rapeseed Plants. Biology and Life Sciences Forum, 2021, 4, 90.	0.6	0

#	Article	IF	CITATIONS
37	In vitro elucidation of suppression effects of composts to soil-borne pathogen Phytophthora nicotianae on pepper plants using 16S amplicon sequencing and metaproteomics. Renewable Agriculture and Food Systems, 2020, 35, 206-214.	1.8	9
38	Evaluating the role of biotic and chemical components of plant-soil feedback of primary successional plants. Biology and Fertility of Soils, 2020, 56, 345-358.	4.3	11
39	Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns. Journal of Fungi (Basel, Switzerland), 2020, 6, 190.	3.5	9
40	Stand age affects fungal community composition in a Central European temperate forest. Fungal Ecology, 2020, 48, 100985.	1.6	15
41	Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 2020, 11, 5125.	12.8	258
42	GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data, 2020, 7, 228.	5.3	92
43	Ligninolytic Enzyme Production and Decolorization Capacity of Synthetic Dyes by Saprotrophic White Rot, Brown Rot, and Litter Decomposing Basidiomycetes. Journal of Fungi (Basel, Switzerland), 2020, 6, 301.	3.5	33
44	Feeding on fungi: genomic and proteomic analysis of the enzymatic machinery of bacteria decomposing fungal biomass. Environmental Microbiology, 2020, 22, 4604-4619.	3.8	17
45	Metagenomics and stable isotope probing reveal the complementary contribution of fungal and bacterial communities in the recycling of dead biomass in forest soil. Soil Biology and Biochemistry, 2020, 148, 107875.	8.8	71
46	Alien ectomycorrhizal plants differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in novel sites. ISME Journal, 2020, 14, 2336-2346.	9.8	19
47	Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos, 2020, 129, 1579-1588.	2.7	63
48	Explorative Meta-Analysis of 377 Extant Fungal Genomes Predicted a Total Mycobiome Functionality of 42.4 Million KEGG Functions. Frontiers in Microbiology, 2020, 11, 143.	3.5	8
49	Long-term decomposition of litter in the montane forest and the definition of fungal traits in the successional space. Fungal Ecology, 2020, 46, 100913.	1.6	22
50	Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– a review. Biomass and Bioenergy, 2020, 134, 105481.	5.7	172
51	Early successional ectomycorrhizal fungi are more likely to naturalize outside their native range than other ectomycorrhizal fungi. New Phytologist, 2020, 227, 1289-1293.	7.3	17
52	FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 2020, 105, 1-16.	12.3	387
53	Termites host specific fungal communities that differ from those in their ambient environments. Fungal Ecology, 2020, 48, 100991.	1.6	11
54	Seasonal influences on bacterial community dynamics in Mediterranean pyrophytic ecosystems. Forest Ecology and Management, 2020, 478, 118520.	3.2	3

#	Article	IF	CITATIONS
55	Identifying Active Members of Litter Fungal Communities by Precursor rRNA. , 2020, , 347-353.		Ο
56	Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil. FEMS Microbiology Ecology, 2019, 95, .	2.7	24
57	Adaptive traits of bark and ambrosia beetle-associated fungi. Fungal Ecology, 2019, 41, 165-176.	1.6	21
58	A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications, 2019, 10, 5142.	12.8	232
59	Fungi associated with beetles dispersing from dead wood – Let's take the beetle bus!. Fungal Ecology, 2019, 39, 100-108.	1.6	41
60	Tracking of the activity of individual bacteria in temperate forest soils shows guild-specific responses to seasonality. Soil Biology and Biochemistry, 2019, 135, 275-282.	8.8	36
61	Tree species identity alters decomposition of understory litter and associated microbial communities: a case study. Biology and Fertility of Soils, 2019, 55, 525-538.	4.3	24
62	Effect of forest fire prevention treatments on bacterial communities associated with productive <i>Boletus edulis</i> sites. Microbial Biotechnology, 2019, 12, 1188-1198.	4.2	23
63	Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnology Advances, 2019, 37, 107374.	11.7	71
64	Bacteria from the endosphere and rhizosphere of Quercus spp. use mainly cell wall-associated enzymes to decompose organic matter. PLoS ONE, 2019, 14, e0214422.	2.5	31
65	Editorial: special issue on the ecology of soil microorganisms. FEMS Microbiology Ecology, 2019, 95, .	2.7	1
66	Changes in Functional Response of Soil Microbial Community along Chronosequence of Spontaneous Succession on Post Mining Forest Sites Evaluated by Biolog and SIR Methods. Forests, 2019, 10, 1005.	2.1	5
67	Cellulaseâ Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems. Microbial Ecology, 2019, 77, 713-725.	2.8	21
68	High-Throughput Sequencing Analysis of the Bacterial Community in Stone Fruit Phloem Tissues Infected by "Candidatus Phytoplasma prunorum― Microbial Ecology, 2019, 77, 664-675.	2.8	4
69	Microbial communities in local and transplanted soils along a latitudinal gradient. Catena, 2019, 173, 456-464.	5.0	11
70	Mycobiome diversity: high-throughput sequencing and identification of fungi. Nature Reviews Microbiology, 2019, 17, 95-109.	28.6	580
71	The known and the unknown in soil microbial ecology. FEMS Microbiology Ecology, 2019, 95, .	2.7	64
72	The effect of traditional slashâ€andâ€burn agriculture on soil organic matter, nutrient content, and microbiota in tropical ecosystems of Papua New Guinea. Land Degradation and Development, 2019, 30, 166-177.	3.9	29

#	Article	IF	CITATIONS
73	A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Science Reviews, 2019, 188, 441-453.	9.1	54
74	The concept of operational taxonomic units revisited: genomes of bacteria that are regarded as closely related are often highly dissimilar. Folia Microbiologica, 2019, 64, 19-23.	2.3	28
75	Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME Journal, 2018, 12, 1768-1778.	9.8	116
76	Inter-laboratory testing of the effect of DNA blocking reagent G2 on DNA extraction from low-biomass clay samples. Scientific Reports, 2018, 8, 5711.	3.3	9
77	SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics, 2018, 34, 2292-2294.	4.1	202
78	Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. Soil Biology and Biochemistry, 2018, 119, 162-173.	8.8	59
79	Independent effects of host and environment on the diversity of woodâ€inhabiting fungi. Journal of Ecology, 2018, 106, 1428-1442.	4.0	74
80	Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biology and Biochemistry, 2018, 118, 187-198.	8.8	64
81	Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME Journal, 2018, 12, 692-703.	9.8	100
82	Drivers of microbial community structure in forest soils. Applied Microbiology and Biotechnology, 2018, 102, 4331-4338.	3.6	157
83	Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nature Ecology and Evolution, 2018, 2, 1956-1965.	7.8	95
84	Specialisation events of fungal metacommunities exposed to a persistent organic pollutant are suggestive of augmented pathogenic potential. Microbiome, 2018, 6, 208.	11.1	16
85	A Short-Term Response of Soil Microbial Communities to Cadmium and Organic Substrate Amendment in Long-Term Contaminated Soil by Toxic Elements. Frontiers in Microbiology, 2018, 9, 2807.	3.5	13
86	Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding. MycoKeys, 2018, 39, 29-40.	1.9	52
87	Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency. Plant and Soil, 2018, 433, 401-413.	3.7	39
88	Different twig litter (Salix caprea) diameter does affect microbial community activity and composition but not decay rate. FEMS Microbiology Ecology, 2018, 94, .	2.7	11
89	Forest soil yeasts: Decomposition potential and the utilization of carbon sources. Fungal Ecology, 2018, 34, 10-19.	1.6	27
90	BTW—Bioinformatics Through Windows: an easy-to-install package to analyze marker gene data. PeerJ, 2018, 6, e5299.	2.0	13

#	Article	IF	CITATIONS
91	Forest microbiome: diversity, complexity and dynamics. FEMS Microbiology Reviews, 2017, 41, fuw040.	8.6	339
92	Efficient screening of potential cellulases and hemicellulases produced by Bosea sp. FBZP-16 using the combination of enzyme assays and genome analysis. World Journal of Microbiology and Biotechnology, 2017, 33, 29.	3.6	21
93	Statistical test for tolerability of effects of an antifungal biocontrol strain on fungal communities in three arable soils. Microbial Biotechnology, 2017, 10, 434-449.	4.2	13
94	Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	456
95	Differential sensitivity of total and active soil microbial communities to drought and forest management. Global Change Biology, 2017, 23, 4185-4203.	9.5	150
96	Editorial: Special thematic issue on the ecology of soil microorganisms. FEMS Microbiology Ecology, 2017, 93, fiw237.	2.7	2
97	Development of microbial community during primary succession in areas degraded by mining activities. Land Degradation and Development, 2017, 28, 2574-2584.	3.9	89
98	Interactions of saprotrophic fungi with tree roots: can we observe the emergence of novel ectomycorrhizal fungi?. New Phytologist, 2017, 215, 511-513.	7.3	21
99	Microbial activity and the dynamics of ecosystem processes in forest soils. Current Opinion in Microbiology, 2017, 37, 128-134.	5.1	92
100	Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiology Ecology, 2017, 93, fiw223.	2.7	73
101	Spatial heterogeneity of cellulolytic activity and fungal communities within individual decomposing Quercus petraea leaves. Fungal Ecology, 2017, 27, 125-133.	1.6	6
102	Distinct environmental variables drive the community composition of mycorrhizal and saprotrophic fungi at the alpine treeline ecotone. Fungal Ecology, 2017, 27, 116-124.	1.6	30
103	Seasonal variation and distribution of total and active microbial community of β-glucosidase encoding genes in coniferous forest soil. Soil Biology and Biochemistry, 2017, 105, 71-80.	8.8	46
104	Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiology Ecology, 2017, 93, .	2.7	67
105	Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments. PLoS ONE, 2017, 12, e0171638.	2.5	66
106	Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome, 2017, 5, 122.	11.1	121
107	Libkindia masarykiana gen. et sp. nov., Yurkovia mendeliana gen. et sp. nov. and Leucosporidium krtinense f.a. sp. nov., isolated from temperate forest soils. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 902-908.	1.7	8
108	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73.	3.5	120

#	Article	IF	CITATIONS
109	Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports, 2016, 6, 25279.	3.3	328
110	Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biological Conservation, 2016, 204, 181-188.	4.1	61
111	Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environmental Microbiology, 2016, 18, 288-301.	3.8	321
112	Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiology Ecology, 2016, 92, fiw185.	2.7	95
113	The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semiâ€∎rid soils. Molecular Ecology, 2016, 25, 4660-4673.	3.9	151
114	Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiology Ecology, 2016, 92, fiw177.	2.7	110
115	Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecology, 2016, 23, 109-122.	1.6	100
116	Comparative assessment of fungal augmentation treatments of a fine-textured and historically oil-contaminated soil. Science of the Total Environment, 2016, 566-567, 250-259.	8.0	24
117	Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnology for Biofuels, 2016, 9, 104.	6.2	56
118	Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytologist, 2016, 210, 1369-1381.	7.3	190
119	The <i>rpb2</i> gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Molecular Ecology Resources, 2016, 16, 388-401.	4.8	66
120	Ecological succession reveals potential signatures of marine–terrestrial transition in salt marsh fungal communities. ISME Journal, 2016, 10, 1984-1997.	9.8	76
121	Effects of the soil microbial community on mobile proportions and speciation of mercury (Hg) in contaminated soil. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 364-370.	1.7	10
122	Terracidiphilus gabretensis gen. nov., sp. nov., an Abundant and Active Forest Soil Acidobacterium Important in Organic Matter Transformation. Applied and Environmental Microbiology, 2016, 82, 560-569.	3.1	67
123	Aerobic bacterial catabolism of persistent organic pollutants — potential impact of biotic and abiotic interaction. Current Opinion in Biotechnology, 2016, 38, 71-78.	6.6	30
124	Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biology and Fertility of Soils, 2016, 52, 251-260.	4.3	116
125	Silvibacterium bohemicum gen. nov. sp. nov., an acidobacterium isolated from coniferous soil in the Bohemian Forest National Park. Systematic and Applied Microbiology, 2016, 39, 14-19.	2.8	31
126	Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood. Journal of Hazardous Materials, 2016, 301, 17-26.	12.4	76

#	Article	IF	CITATIONS
127	Fungal Communities in Soils: Soil Organic Matter Degradation. Methods in Molecular Biology, 2016, 1399, 89-100.	0.9	2
128	Biotic interactions mediate soil microbial feedbacks to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7033-7038.	7.1	201
129	Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry, 2015, 84, 53-64.	8.8	495
130	An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination. Biology and Fertility of Soils, 2015, 51, 827-837.	4.3	32
131	Olive mill wastewater biodegradation potential of white-rot fungi – Mode of action of fungal culture extracts and effects of ligninolytic enzymes. Bioresource Technology, 2015, 189, 121-130.	9.6	51
132	The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biology and Biochemistry, 2015, 87, 43-50.	8.8	112
133	Reply to Veresoglou: Overdependence on "significance―testing in biology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5114-E5114.	7.1	2
134	Fungal succession in the needle litter of a montane Picea abies forest investigated through strain isolation and molecular fingerprinting. Fungal Ecology, 2015, 13, 157-166.	1.6	22
135	Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecology, 2015, 13, 10-22.	1.6	108
136	Potential of Cometabolic Transformation of Polysaccharides and Lignin in Lignocellulose by Soil Actinobacteria. PLoS ONE, 2014, 9, e89108.	2.5	152
137	Draft Genome Sequence of Burkholderia sordidicola S170, a Potential Plant Growth Promoter Isolated from Coniferous Forest Soil in the Czech Republic. Genome Announcements, 2014, 2, .	0.8	10
138	Climate fails to predict wood decomposition at regional scales. Nature Climate Change, 2014, 4, 625-630.	18.8	281
139	Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist, 2014, 201, 269-278.	7.3	300
140	Litter decomposition along a primary post-mining chronosequence. Biology and Fertility of Soils, 2014, 50, 827-837.	4.3	25
141	When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME Journal, 2014, 8, 1920-1931.	9.8	125
142	Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods. Applied Microbiology and Biotechnology, 2014, 98, 1531-1537.	3.6	49
143	Distribution of Extracellular Enzymes in Soils: Spatial Heterogeneity and Determining Factors at Various Scales. Soil Science Society of America Journal, 2014, 78, 11-18.	2.2	118
144	Wood resource and not fungi attract earlyâ€successional saproxylic species of <i>Heteroptera –</i> an experimental approach. Insect Conservation and Diversity, 2014, 7, 533-542.	3.0	24

#	Article	IF	CITATIONS
145	Topâ€down control of soil fungal community composition by a globally distributed keystone consumer. Ecology, 2013, 94, 2518-2528.	3.2	119
146	Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. Forest Ecology and Management, 2013, 309, 87-95.	3.2	161
147	Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME Journal, 2013, 7, 477-486.	9.8	588
148	Extracellular Enzymes of the White-Rot Fungus Fomes fomentarius and Purification of 1,4-β-Glucosidase. Applied Biochemistry and Biotechnology, 2013, 169, 100-109.	2.9	23
149	Estimation of fungal biomass in forest litter and soil. Fungal Ecology, 2013, 6, 1-11.	1.6	142
150	Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biology and Biochemistry, 2013, 56, 60-68.	8.8	226
151	Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biology and Fertility of Soils, 2013, 49, 1027-1037.	4.3	168
152	Bacterial communities in tetrachloroethene-polluted groundwaters: A case study. Science of the Total Environment, 2013, 454-455, 517-527.	8.0	56
153	Dominant trees affect microbial community composition and activity in post-mining afforested soils. Soil Biology and Biochemistry, 2013, 56, 105-115.	8.8	101
154	The Variability of the 16S rRNA Gene in Bacterial Genomes and Its Consequences for Bacterial Community Analyses. PLoS ONE, 2013, 8, e57923.	2.5	957
155	Soil Food Web Changes during Spontaneous Succession at Post Mining Sites: A Possible Ecosystem Engineering Effect on Food Web Organization?. PLoS ONE, 2013, 8, e79694.	2.5	46
156	Scaling Down the Analysis of Environmental Processes: Monitoring Enzyme Activity in Natural Substrates on a Millimeter Resolution Scale. Applied and Environmental Microbiology, 2012, 78, 3473-3475.	3.1	27
157	Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiology Ecology, 2012, 80, 735-746.	2.7	381
158	Fungal polysaccharide monooxygenases: new players in the decomposition of cellulose. Fungal Ecology, 2012, 5, 481-489.	1.6	51
159	Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME Journal, 2012, 6, 248-258.	9.8	725
160	Diversity of foliar endophytes in wind-fallen Picea abies trees. Fungal Diversity, 2012, 54, 69-77.	12.3	58
161	Laccase activity in soils: Considerations for the measurement of enzyme activity. Chemosphere, 2012, 88, 1154-1160.	8.2	81
162	Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus. Chemosphere, 2012, 88, 620-626.	8.2	66

#	Article	IF	CITATIONS
163	Laccaseâ€catalysed oxidations of naturally occurring phenols: from <i>in vivo</i> biosynthetic pathways to green synthetic applications. Microbial Biotechnology, 2012, 5, 318-332.	4.2	193
164	Intergeneric variability in enzyme production of microfungi from pine litter. Soil Biology and Biochemistry, 2012, 49, 1-3.	8.8	10
165	Chemical composition of litter affects the growth and enzyme production by the saprotrophic basidiomycete Hypholoma fasciculare. Fungal Ecology, 2011, 4, 417-426.	1.6	34
166	Enzyme activities of fungi associated with Picea abies needles. Fungal Ecology, 2011, 4, 427-436.	1.6	46
167	Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiology Ecology, 2011, 75, 291-303.	2.7	198
168	Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil. FEMS Microbiology Ecology, 2011, 78, 80-90.	2.7	58
169	Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining. FEMS Microbiology Ecology, 2011, 78, 59-69.	2.7	49
170	Ecology and metagenomics of soil microorganisms. FEMS Microbiology Ecology, 2011, 78, 1-2.	2.7	10
171	Invertebrate grazing determines enzyme production by basidiomycete fungi. Soil Biology and Biochemistry, 2011, 43, 2060-2068.	8.8	67
172	Ecology of coarse wood decomposition by the saprotrophic fungus Fomes fomentarius. Biodegradation, 2011, 22, 709-718.	3.0	40
173	Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant and Soil, 2011, 338, 99-110.	3.7	167
174	Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant and Soil, 2011, 338, 111-125.	3.7	158
175	Small-scale distribution of extracellular enzymes, fungal, and bacterial biomass in Quercus petraea forest topsoil. Biology and Fertility of Soils, 2010, 46, 717-726.	4.3	77
176	Transformation of 14C-labelled lignin and humic substances in forest soil by the saprobic basidiomycetes Gymnopus erythropus and Hypholoma fasciculare. Soil Biology and Biochemistry, 2010, 42, 1541-1548.	8.8	43
177	Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. Journal of Hazardous Materials, 2010, 178, 1141-1145.	12.4	72
178	Lignocellulose-Degrading Enzymes in Soils. Soil Biology, 2010, , 167-186.	0.8	9
179	Effect of long-term preservation of basidiomycetes on perlite in liquid nitrogen on their growth, morphological, enzymatic and genetic characteristics. Fungal Biology, 2010, 114, 929-935.	2.5	19
180	Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genetics and Biology, 2010, 47, 562-571.	2.1	98

#	Article	IF	CITATIONS
181	Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Applied Soil Ecology, 2010, 46, 177-182.	4.3	119
182	Effect of Heavy Metals on Saprotrophic Soil Fungi. Soil Biology, 2010, , 263-279.	0.8	19
183	Enzymes in Forest Soils. Soil Biology, 2010, , 61-73.	0.8	8
184	Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs?. Oecologia, 2009, 161, 657-660.	2.0	140
185	Phylogenetic composition and properties of bacteria coexisting with the fungus <i>Hypholoma fasciculare</i> in decaying wood. ISME Journal, 2009, 3, 1218-1221.	9.8	104
186	Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme and Microbial Technology, 2008, 43, 186-192.	3.2	92
187	Degradation of cellulose by basidiomycetous fungi. FEMS Microbiology Reviews, 2008, 32, 501-521.	8.6	671
188	Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology and Biochemistry, 2008, 40, 2068-2075.	8.8	264
189	Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biology and Biochemistry, 2008, 40, 2107-2115.	8.8	126
190	Synthesis of zirconia-immobilized copper chelates for catalytic decomposition of hydrogen peroxide and the oxidation of polycyclic aromatic hydrocarbons. Chemosphere, 2008, 72, 1721-1726.	8.2	9
191	Fungal bioremediation of the creosote-contaminated soil: Influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Chemosphere, 2008, 73, 1518-1523.	8.2	59
192	Wood-inhabiting ligninolytic basidiomycetes in soils: Ecology and constraints for applicability in bioremediation. Fungal Ecology, 2008, 1, 4-12.	1.6	146
193	Chapter 2 Enzymes of saprotrophic basidiomycetes. British Mycological Society Symposia Series, 2008, 28, 19-41.	0.5	79
194	Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Research in Microbiology, 2007, 158, 447-455.	2.1	90
195	Decolorization of textile dyes by whole cultures of Ischnoderma resinosum and by purified laccase and Mn-peroxidase. Enzyme and Microbial Technology, 2007, 40, 1673-1677.	3.2	63
196	Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biology and Biochemistry, 2007, 39, 2651-2660.	8.8	155
197	Temperature affects the production, activity and stability of ligninolytic enzymes inPleurotus ostreatus andTrametes versicolor. Folia Microbiologica, 2007, 52, 498-502.	2.3	57
198	Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus. Research in Microbiology, 2006, 157, 119-124.	2.1	70

#	Article	IF	CITATIONS
199	Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Research in Microbiology, 2006, 157, 248-253.	2.1	134
200	Fungal laccases – occurrence and properties. FEMS Microbiology Reviews, 2006, 30, 215-242.	8.6	1,751
201	Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes. Enzyme and Microbial Technology, 2006, 39, 1023-1029.	3.2	76
202	Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus – production of extracellular enzymes and characterization of the major cellulases. Microbiology (United Kingdom), 2006, 152, 3613-3622.	1.8	124
203	Influence of Dimethyl Sulfoxide on Extracellular Enzyme Production by PleurotusÂostreatus. Biotechnology Letters, 2006, 28, 651-655.	2.2	10
204	Production of lignocellulose-degrading enzymes and changes in soil bacterial communities during the growth ofPleurotus ostreatus in soil with different carbon content. Folia Microbiologica, 2006, 51, 579-590.	2.3	19
205	The use of hydroxyl-radical-generating systems for the treatment of olive mill wastewaters. Folia Microbiologica, 2006, 51, 337-341.	2.3	8
206	Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides. Applied Catalysis B: Environmental, 2006, 66, 258-264.	20.2	156
207	Degradation of polycyclic aromatic hydrocarbons by hydrogen peroxide catalyzed by heterogeneous polymeric metal chelates. Applied Catalysis B: Environmental, 2005, 59, 267-274.	20.2	19
208	Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Research in Microbiology, 2005, 156, 670-676.	2.1	102
209	Degradation of BTEX and PAHs by Co(II) and Cu(II)-based radical-generating systems. Applied Catalysis B: Environmental, 2004, 51, 159-164.	20.2	23
210	Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Applied Microbiology and Biotechnology, 2004, 63, 560-563.	3.6	154
211	Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiology Ecology, 2004, 50, 245-253.	2.7	182
212	Decolorization of dyes using white-rot fungi and radical-generating reactions. Biocatalysis and Biotransformation, 2004, 22, 325-330.	2.0	16
213	Decolorization of synthetic dyes using a copper complex with glucaric acid. Chemosphere, 2004, 54, 291-295.	8.2	44
214	Copper–ligand complex for the decolorization of synthetic dyes. Chemosphere, 2004, 57, 1207-1211.	8.2	28
215	ICP-MS determination of heavy metals in submerged cultures of wood-rotting fungi. Talanta, 2004, 62, 483-487.	5.5	37
216	Decolorization of dyes with copper(II)/organic acid/hydrogen peroxide systems. Applied Catalysis B: Environmental, 2003, 46, 287-292.	20.2	88

#	Article	IF	CITATIONS
217	Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 2003, 32, 78-91.	3.2	539
218	Lignocellulose degradation byPleurotus ostreatusin the presence of cadmium. FEMS Microbiology Letters, 2003, 220, 235-240.	1.8	90
219	Decolorization of structurally different synthetic dyes using cobalt(II)/ascorbic acid/hydrogen peroxide system. Chemosphere, 2003, 50, 975-979.	8.2	70
220	Intraspecific Variability in Growth Response to Cadmium of the Wood-Rotting Fungus Piptoporus betulinus. Mycologia, 2002, 94, 428.	1.9	33
221	Intraspecific variability in growth response to cadmium of the wood-rotting fungus <i>Piptoporus betulinus</i> . Mycologia, 2002, 94, 428-436.	1.9	62
222	Investigation of the response of wood-rotting fungi to copper stress by size-exclusion chromatography and capillary zone electrophoresis with ICP MS detection. Analytical and Bioanalytical Chemistry, 2002, 372, 453-456.	3.7	10
223	Copper and cadmium increase laccase activity inPleurotus ostreatus. FEMS Microbiology Letters, 2002, 206, 69-74.	1.8	222
224	Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiology Letters, 2002, 206, 69-74.	1.8	15
225	Screening of Pleurotus ostreatus isolates for their ligninolytic properties during cultivation on natural substrates. Biodegradation, 2000, 11, 279-287.	3.0	37
226	Influence of Cadmium and Mercury on Activities of Ligninolytic Enzymes and Degradation of Polycyclic Aromatic Hydrocarbons by Pleurotus ostreatus in Soil. Applied and Environmental Microbiology, 2000, 66, 2471-2478.	3.1	200
227	Improved Isolation of Nucleic Acids from Basidiomycete Fungi. BioTechniques, 1999, 27, 458-462.	1.8	12
228	Biosorption of cadmium to mycelial pellets of wood-rotting fungi. Biotechnology Letters, 1996, 10, 345.	0.5	34
229	Recommendations for connecting molecular sequence and biodiversity research infrastructures through ELIXIR. F1000Research, 0, 10, 1238.	1.6	3