
Wim Deferme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6694033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasonic spray coating of polyethylenimine (ethoxylated) as electron injection and transport layer for organic light emitting diodes: The influence of layer morphology and thickness on the interface physics between polyethylenimine (ethoxylated) and the Al cathode. Nano Select, 2022, 3, 851-863.	1.9	2
2	Ultrasonic Spray Coating of Silver Nanowireâ€Based Electrodes for Organic Lightâ€Emitting Diodes. Advanced Engineering Materials, 2022, 24, 2100808.	1.6	7
3	Printed pH Sensors for Textileâ€Based Wearables: A Conceptual and Experimental Study on Materials, Deposition Technology, and Sensing Principles. Advanced Engineering Materials, 2022, 24, 2101087.	1.6	10
4	Fiber Engineering Trifecta of Spinnability, Morphology, and Properties: Centrifugally Spun versus Electrospun Fibers. ACS Applied Polymer Materials, 2022, 4, 2022-2035.	2.0	7
5	Stretchable printed device for the simultaneous sensing of temperature and strain validated in a mouse wound healing model. Scientific Reports, 2022, 12, .	1.6	13
6	Printing of flexible light emitting devices: A review on different technologies and devices, printing technologies and state-of-the-art applications and future prospects. Progress in Materials Science, 2021, 118, 100760.	16.0	36
7	Monitoring Body Fluids in Textiles: Combining Impedance and Thermal Principles in a Printed, Wearable, and Washable Sensor. ACS Sensors, 2021, 6, 896-907.	4.0	20
8	Oxygen Gas and UV Barrier Properties of Nano-ZnO-Coated PET and PHBHHx Materials Fabricated by Ultrasonic Spray-Coating Technique. Nanomaterials, 2021, 11, 449.	1.9	9
9	Fully printed, stretchable and wearable bioimpedance sensor on textiles for tomography. Flexible and Printed Electronics, 2021, 6, 015010.	1.5	13
10	Inkjetâ€Printed Lenses with Adjustable Contact Angle to Improve the Light Outâ€Coupling of Organic Lightâ€Emitting Diodes. Advanced Engineering Materials, 2021, 23, 2100212.	1.6	5
11	Centrifugally spun poly(ethylene oxide) fibers rival the properties of electrospun fibers. Journal of Polymer Science, 2021, 59, 2754-2762.	2.0	12
12	Screen Printed Antennas on Fiber-Based Substrates for Sustainable HF RFID Assisted E-Fulfilment Smart Packaging. Materials, 2021, 14, 5500.	1.3	20
13	Printed Electronics (PE) As An enabling Technology To Realize Flexible Mass Customized Smart Applications. Procedia CIRP, 2021, 96, 115-120.	1.0	32
14	Biocompatibility Testing of Liquid Metal as an Interconnection Material for Flexible Implant Technology. Nanomaterials, 2021, 11, 3251.	1.9	8
15	A Model-Based Sensor Fusion Approach for Force and Shape Estimation in Soft Robotics. IEEE Robotics and Automation Letters, 2020, 5, 5621-5628.	3.3	47
16	Photo-induced copper-mediated (meth)acrylate polymerization towards graphene oxide and reduced graphene oxide modification. European Polymer Journal, 2020, 134, 109810.	2.6	5
17	Inkjet Printing of PEDOT:PSS Based Conductive Patterns for 3D Forming Applications. Polymers, 2020, 12, 2915.	2.0	28
18	Layer Morphology and Ink Compatibility of Silver Nanoparticle Inkjet Inks for Near-Infrared Sintering. Nanomaterials, 2020, 10, 892.	1.9	12

WIM DEFERME

#	Article	IF	CITATIONS
19	Influence of Polymer Concentration and Nozzle Material on Centrifugal Fiber Spinning. Polymers, 2020, 12, 575.	2.0	34
20	Miniaturized and Thermalâ€Based Measurement System to Measure Moisture in Textile Materials. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900835.	0.8	1
21	Velocity and size measurement of droplets from an ultrasonic spray coater using photon correlation spectroscopy and turbidimetry. Applied Optics, 2020, 59, 7496.	0.9	4
22	Effectiveness of Ligand Denticity-Dependent Oxidation Protection in Copper MOD Inks. Langmuir, 2019, 35, 16101-16110.	1.6	7
23	(Bio)polymer/ZnO Nanocomposites for Packaging Applications: A Review of Gas Barrier and Mechanical Properties. Nanomaterials, 2019, 9, 1494.	1.9	60
24	Charge-Discharge Characteristics of Textile Energy Storage Devices Having Different PEDOT:PSS Ratios and Conductive Yarns Configuration. Polymers, 2019, 11, 345.	2.0	20
25	New Type of Thermal Moisture Sensor for inâ€Textile Measurements. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800765.	0.8	6
26	Links Between Heathland Fungal Biomass Mineralization, Melanization, and Hydrophobicity. Microbial Ecology, 2018, 76, 762-770.	1.4	10
27	Direct Printing of Light-Emitting Devices on Textile Substrates. , 2018, , 259-277.		1
28	Silicone Devices. , 2018, , .		43
29	Organic and perovskite solar cells for space applications. Solar Energy Materials and Solar Cells, 2018, 182, 121-127.	3.0	146
30	Ultrasonic Spray Coating as a Fast Alternative Technique for the Deposition of Hybrid Magneticâ€Plasmonic Nanocomposites. Advanced Engineering Materials, 2018, 20, 1800681.	1.6	6
31	Screen-printing of flexible semi-transparent electrodes and devices based on silver nanowire networks. Nanotechnology, 2018, 29, 425201.	1.3	16
32	Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties. Materials, 2018, 11, 290.	1.3	19
33	Fabrication Approaches to Interconnect Based Devices for Stretchable Electronics: A Review. Materials, 2018, 11, 375.	1.3	28
34	Methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications. Journal of Materials Research, 2018, 33, 1841-1852.	1.2	9
35	Optimizing the outcoupling efficiency and the radiation pattern of organic light emitting devices by inkjet printing lens arrays films. , 2018, , .		4
36	Ultrasonically spray coated silver layers from designed precursor inks for flexible electronics. Nanotechnology, 2017, 28, 215202.	1.3	12

WIM DEFERME

#	Article	IF	CITATIONS
37	Surface Roughness Reduction of Additive Manufactured Products by Applying a Functional Coating Using Ultrasonic Spray Coating. Coatings, 2017, 7, 208.	1.2	22
38	Steering the Properties of MoOx Hole Transporting Layers in OPVs and OLEDs: Interface Morphology vs. Electronic Structure. Materials, 2017, 10, 123.	1.3	6
39	Layer formation and morphology of ultrasonic spray coated polystyrene nanoparticle layers. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1441-1446.	0.8	12
40	A study on the thermal sintering process of silver nanoparticle inkjet inks to achieve smooth and highly conducting silver layers. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1403-1409.	0.8	28
41	Ultrasonic spray coating as deposition technique for the light-emitting layer in polymer LEDs. Organic Electronics, 2015, 20, 31-35.	1.4	39
42	Eco-friendly spray coating of organic solar cells through water-based nanoparticles ink (Presentation Recording). , 2015, , .		0
43	Microwave annealing, a promising step in the roll-to-roll processing of organic electronics. Facta Universitatis - Series Electronics and Energetics, 2015, 28, 143-151.	0.6	2
44	Towards fully spray coated organic light emitting devices. Proceedings of SPIE, 2014, , .	0.8	1
45	Microwave annealing as fast alternative for hotplate annealing of poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate). , 2014, , .		1
46	Molecular imprinted polymer films on <scp>RFID</scp> tags: a first step towards disposable packaging sensors. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 938-944.	0.8	16
47	Crystallite size dependent carrier recombination rate and thermal diffusivity in undoped and boron doped <scp>CVD</scp> diamond layers. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2022-2027.	0.8	4
48	Surface states and photo-induced charge transfer on oxygen-terminated chemical vapor deposition diamond. Journal of Applied Physics, 2011, 109, .	1.1	4
49	Carrier lifetime, diffusion length and mobility in (100) CVD diamond samples pre-treated in an O2/H2-plasma. Materials Research Society Symposia Proceedings, 2011, 1282, 39.	0.1	0
50	Charge transport in high mobility single crystal diamond. Diamond and Related Materials, 2008, 17, 1235-1240.	1.8	100
51	Electrostatic force microscopy mapping of electrical conductivity of hydrogen-terminated diamond films. Applied Physics Letters, 2007, 91, 142111.	1.5	2
52	The Influence of Different Surface Terminations on Electrical Transport and Emission Properties for Freestanding Single Crystalline (100) CVD Diamond Samples. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	0
53	Tip voltage controlled local modification of hydrogenated diamond surface with an atomic force microscope. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2920-2924.	0.8	3
54	Electrostatic force microscopy study of electrical conductivity of hydrogenâ€ŧerminated CVD diamond films. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2915-2919.	0.8	0

WIM DEFERME

#	Article	IF	CITATIONS
55	Electrical transport measurements and emission properties of freestanding single crystalline CVD diamond samples. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3017-3022.	0.8	14
56	Titanium Nitride Grown by Sputtering for Contacts on Boron-Doped Diamond. Plasma Processes and Polymers, 2007, 4, S139-S143.	1.6	2
57	The role of (sub)-surface oxygen on the surface electronic structure of hydrogen terminated (100) CVD diamond. Diamond and Related Materials, 2006, 15, 687-691.	1.8	14
58	Investigation of hydrogenated CVD diamond films by photo-thermal ionization spectroscopy. Diamond and Related Materials, 2006, 15, 682-686.	1.8	2
59	Compositional and electrical characterisation of the hydrogen-oxygen terminated diamond (100) surface. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3114-3120.	0.8	8
60	Thick single crystal CVD diamond prepared from CH4-rich mixtures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3063-3069.	0.8	20
61	PTIS investigation of hydrogenated CVD diamond films. Physica Status Solidi A, 2005, 202, 2171-2176.	1.7	1
62	Head-On Immobilization of DNA Fragments on CVD-Diamond Layers. Materials Science Forum, 2005, 492-493, 267-272.	0.3	6