Yasuhiro Tsume

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6693668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dissolution Challenges Associated with the Surface pH of Drug Particles: Integration into Mechanistic Oral Absorption Modeling. AAPS Journal, 2022, 24, 17.	4.4	9
2	An In Vivo Predictive Dissolution Methodology (iPD Methodology) with a BCS Class IIb Drug Can Predict the In Vivo Bioequivalence Results: Etoricoxib Products. Pharmaceutics, 2021, 13, 507.	4.5	7
3	The in vivo predictive dissolution for immediate release dosage of donepezil and danazol, BCS class IIc drugs, with the GIS and the USP II with biphasic dissolution apparatus. Journal of Drug Delivery Science and Technology, 2020, 56, 100920.	3.0	10
4	Biopredictive in vitro testing methods to assess intestinal drug absorption from supersaturating dosage forms. Journal of Drug Delivery Science and Technology, 2020, 56, 101275.	3.0	6
5	The Introduction of a New Flexible InÂVivo Predictive Dissolution Apparatus, GIS-Alpha (GIS-α), to Study Dissolution Profiles of BCS Class IIb Drugs, Dipyridamole and Ketoconazole. Journal of Pharmaceutical Sciences, 2020, 109, 3471-3479.	3.3	7
6	A Mechanistic Physiologically-Based Biopharmaceutics Modeling (PBBM) Approach to Assess the In Vivo Performance of an Orally Administered Drug Product: From IVIVC to IVIVP. Pharmaceutics, 2020, 12, 74.	4.5	49
7	Exploring Bioequivalence of Dexketoprofen Trometamol Drug Products with the Gastrointestinal Simulator (GIS) and Precipitation Pathways Analyses. Pharmaceutics, 2019, 11, 122.	4.5	17
8	Measuring the Impact of Gastrointestinal Variables on the Systemic Outcome of Two Suspensions of Posaconazole by a PBPK Model. AAPS Journal, 2018, 20, 57.	4.4	19
9	Evaluation and optimized selection of supersaturating drug delivery systems of posaconazole (BCS) Tj ETQq1 Journal of Pharmaceutical Sciences, 2018, 115, 258-269.	1 0.784314 4.0	rgBT /Overlo 43
10	The Combination of GIS and Biphasic to Better Predict InÂVivo Dissolution of BCS Class IIb Drugs, Ketoconazole and Raloxifene. Journal of Pharmaceutical Sciences, 2018, 107, 307-316.	3.3	40
11	Linking the Gastrointestinal Behavior of Ibuprofen with the Systemic Exposure between and within Humans—Part 2: Fed State. Molecular Pharmaceutics, 2018, 15, 5468-5478.	4.6	12
12	Linking the Gastrointestinal Behavior of Ibuprofen with the Systemic Exposure between and within Humans—Part 1: Fasted State Conditions. Molecular Pharmaceutics, 2018, 15, 5454-5467.	4.6	21
13	In Vivo Predictive Dissolution and Simulation Workshop Report: Facilitating the Development of Oral Drug Formulation and the Prediction of Oral Bioperformance. AAPS Journal, 2018, 20, 100.	4.4	7
14	Gastric emptying and intestinal appearance of nonabsorbable drugs phenol red and paromomycin in human subjects: A multi-compartment stomach approach. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 162-174.	4.3	24
15	Formulation predictive dissolution (fPD) testing to advance oral drug product development: An introduction to the US FDA funded â€~21st Century BA/BE' project. International Journal of Pharmaceutics, 2018, 548, 120-127.	5.2	41
16	Effect of biphenyl hydrolase-like (BPHL) gene disruption on the intestinal stability, permeability and absorption of valacyclovir in wildtype and Bphl knockout mice. Biochemical Pharmacology, 2018, 156, 147-156.	4.4	4
17	Utilization of Gastrointestinal Simulator, an in Vivo Predictive Dissolution Methodology, Coupled with Computational Approach To Forecast Oral Absorption of Dipyridamole. Molecular Pharmaceutics, 2017, 14, 1181-1189.	4.6	26
18	The impact of supersaturation level for oral absorption of BCS class IIb drugs, dipyridamole and ketoconazole, using in vivo predictive dissolution system: Gastrointestinal Simulator (GIS). European Journal of Pharmaceutical Sciences, 2017, 102, 126-139.	4.0	44

YASUHIRO TSUME

#	Article	IF	CITATIONS
19	Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Letters, 2017, 394, 52-64.	7.2	108
20	Measurement of <i>in vivo</i> Gastrointestinal Release and Dissolution of Three Locally Acting Mesalamine Formulations in Regions of the Human Gastrointestinal Tract. Molecular Pharmaceutics, 2017, 14, 345-358.	4.6	39
21	<i>In Vivo</i> Dissolution and Systemic Absorption of Immediate Release Ibuprofen in Human Gastrointestinal Tract under Fed and Fasted Conditions. Molecular Pharmaceutics, 2017, 14, 4295-4304.	4.6	46
22	Low Buffer Capacity and Alternating Motility along the Human Gastrointestinal Tract: Implications for <i>in Vivo</i> Dissolution and Absorption of Ionizable Drugs. Molecular Pharmaceutics, 2017, 14, 4281-4294.	4.6	94
23	Oral product input to the GI tract: GIS an oral product performance technology. Frontiers of Chemical Science and Engineering, 2017, 11, 516-520.	4.4	2
24	Mechanistic Fluid Transport Model to Estimate Gastrointestinal Fluid Volume and Its Dynamic Change Over Time. AAPS Journal, 2017, 19, 1682-1690.	4.4	22
25	Potential Development of Tumor-Targeted Oral Anti-Cancer Prodrugs: Amino Acid and Dipeptide Monoester Prodrugs of Gemcitabine. Molecules, 2017, 22, 1322.	3.8	15
26	The Evaluation of InÂVitro Drug Dissolution of Commercially Available Oral Dosage Forms for Itraconazole in Gastrointestinal Simulator With Biorelevant Media. Journal of Pharmaceutical Sciences, 2016, 105, 2804-2814.	3.3	48
27	Carrier-Mediated Prodrug Uptake to Improve the Oral Bioavailability of Polar Drugs: An Application to an Oseltamivir Analogue. Journal of Pharmaceutical Sciences, 2016, 105, 925-934.	3.3	21
28	<i>In Vitro</i> Dissolution of Fluconazole and Dipyridamole in Gastrointestinal Simulator (GIS), Predicting <i>in Vivo</i> Dissolution and Drug–Drug Interaction Caused by Acid-Reducing Agents. Molecular Pharmaceutics, 2015, 12, 2418-2428.	4.6	53
29	In vitro dissolution methodology, mini-Gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib. European Journal of Pharmaceutical Sciences, 2015, 76, 203-212.	4.0	64
30	Evaluation of a Three Compartment In Vitro Gastrointestinal Simulator Dissolution Apparatus to Predict In Vivo Dissolution. Journal of Pharmaceutical Sciences, 2014, 103, 3416-3422.	3.3	65
31	The Biopharmaceutics Classification System: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. European Journal of Pharmaceutical Sciences, 2014, 57, 152-163.	4.0	258
32	Selection of Suitable Prodrug Candidates for in vivo Studies via in vitro Studies; The Correlation of Prodrug Stability in Between Cell Culture Homogenates and Human Tissue Homogenates. Journal of Pharmacy and Pharmaceutical Sciences, 2012, 15, 433.	2.1	10
33	<i>In silico</i> prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen. Biopharmaceutics and Drug Disposition, 2012, 33, 366-377.	1.9	85
34	The achievement of mass balance by simultaneous quantification of floxuridine prodrug, floxuridine, 5-fluorouracil, 5-dihydrouracil, α-fluoro-β-ureidopropionate, α-fluoro-β-alanine using LC–MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 915-920.	2.3	8
35	The Biowaiver Extension for BCS Class III Drugs: The Effect of Dissolution Rate on the Bioequivalence of BCS Class III Immediate-Release Drugs Predicted by Computer Simulation. Molecular Pharmaceutics, 2010, 7, 1235-1243.	4.6	68
36	Enhanced Absorption and Growth Inhibition with Amino Acid Monoester Prodrugs of Floxuridine by Targeting hPEPT1 Transporters. Molecules, 2008, 13, 1441-1454.	3.8	39