
Kent J Crippen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6693223/publications.pdf Version: 2024-02-01

KENTLODIDDEN

#	Article	IF	CITATIONS
1	Social Media Interaction as Informal Science Learning: a Comparison of Message Design in Two Niches. Research in Science Education, 2022, 52, 1-20.	2.3	10
2	An Exploration of Perceptions of Justice in a Career-Forward Undergraduate Chemistry Laboratory Course. Journal for STEM Education Research, 2022, 5, 102-125.	1.5	2
3	Social Paleontology on Twitter: A Case Study of Topic Archetypes, Network Composition, and Structure. Social Media and Society, 2022, 8, 205630512210804.	3.0	0
4	The varied experience of undergraduate students during the transition to mandatory online chem lab during the initial lockdown of the COVID-19 pandemic. Disciplinary and Interdisciplinary Science Education Research, 2022, 4, .	2.9	3
5	Profiles in Practice: Stories of Paleontology Within an Online, Scientific Community. International Journal of Science and Mathematics Education, 2021, 19, 915-933.	2.5	0
6	Virtual Laboratories in Undergraduate Science and Engineering Courses: a Systematic Review, 2009–2019. Journal of Science Education and Technology, 2021, 30, 16-30.	3.9	48
7	The varied experience of undergraduate students learning chemistry in virtual reality laboratories. Computers and Education, 2021, 175, 104320.	8.3	22
8	User experience and motivation with engineering design challenges in general chemistry laboratory. Innovation and Education, 2021, 3, .	0.6	2
9	Scientific Twitter: The flow of paleontological communication across a topic network. PLoS ONE, 2019, 14, e0219688.	2.5	12
10	Designing for Collaborative Problem Solving in STEM Cyberlearning. Innovations in Science Education and Technology, 2018, , 89-116.	0.3	13
11	Mental models and social media personas: a case of amateur palaeontologists. International Journal of Social Media and Interactive Learning Environments, 2018, 6, 44.	0.4	1
12	The Effect of Scaffolding Strategies for Inscriptions and Argumentation in a Science Cyberlearning Environment. Journal of Science Education and Technology, 2017, 26, 33-43.	3.9	10
13	The Knowledge and Practices of High School Science Teachers in Pursuit of Cultural Responsiveness. Science Education, 2017, 101, 99-133.	3.0	39
14	The Growing Awareness Inventory: Building Capacity for Culturally Responsive Science and Mathematics With a Structured Observation Protocol. School Science and Mathematics, 2016, 116, 127-138.	0.9	17
15	Seeking Shared Practice: A Juxtaposition of the Attributes and Activities of Organized Fossil Groups with Those of Professional Paleontology. Journal of Science Education and Technology, 2016, 25, 731-746.	3.9	32
16	Designing for culturally responsive science education through professional development. International Journal of Science Education, 2016, 38, 470-492.	1.9	35
17	A design-based apprenticeship approach to transform freshman chemistry for engineering students. Qscience Proceedings, 2015, , .	0.0	3
18	Fossil—A National Network of Fossil Clubs and Professional Paleontologists in the U.S The Paleontological Society Special Publications, 2014, 13, 128-128.	0.0	0

Kent J Crippen

#	Article	IF	CITATIONS
19	High School Students' Learning and Perceptions of Phylogenetics of Flowering Plants. CBE Life Sciences Education, 2014, 13, 653-665.	2.3	13
20	Translating Current Science into Materials for High School via a Scientist–Teacher Partnership. Journal of Science Teacher Education, 2014, 25, 239-262.	2.5	17
21	The Nature of Laboratory Learning Experiences in Secondary Science Online. Research in Science Education, 2013, 43, 1029-1050.	2.3	11
22	The Interactive Effects of Personal Achievement Goals and Performance Feedback in an Undergraduate Science Class. Journal of Experimental Education, 2013, 81, 556-578.	2.6	33
23	Variation theory: A theory of learning and a useful theoretical framework for chemical education research. Chemistry Education Research and Practice, 2013, 14, 9-22.	2.5	52
24	Teachers' barriers to introducing system dynamics in Kâ€12 STEM curriculum. System Dynamics Review, 2013, 29, 157-169.	1.9	14
25	The Utility of Interaction Analysis for Generalizing Characteristics of Science Classrooms. School Science and Mathematics, 2013, 113, 235-247.	0.9	0
26	Scaffolded Inquiry-Based Instruction with Technology: A Signature Pedagogy for STEM Education. Computers in the Schools, 2012, 29, 157-173.	1.0	78
27	Argument as Professional Development: Impacting Teacher Knowledge and Beliefs About Science. Journal of Science Teacher Education, 2012, 23, 847-866.	2.5	34
28	Applying a Cognitive-Affective Model of Conceptual Change to Professional Development. Journal of Science Teacher Education, 2010, 21, 371-388.	2.5	17
29	Using professional development to achieve classroom reform and science proficiency: an urban success story from southern Nevada, USA. Professional Development in Education, 2010, 36, 637-661.	2.8	17
30	The effects of feedback protocol on self-regulated learning in a web-based worked example learning environment. Computers and Education, 2010, 55, 1470-1482.	8.3	38
31	Applying cognitive theory to chemistry instruction: the case for worked examples. Chemistry Education Research and Practice, 2009, 10, 35-41.	2.5	18
32	K–12 Distance Educators at Work. Journal of Research on Technology in Education, 2009, 41, 363-391.	6.5	77
33	Understanding Teachers' Conceptions of Classroom Inquiry With a Teaching Scenario Survey Instrument. Journal of Science Teacher Education, 2008, 19, 337-354.	2.5	33
34	The Impact of Block Scheduling on Student Motivation and Classroom Practice in Mathematics. NASSP Bulletin, 2008, 92, 191-208.	0.7	7
35	The impact of web-based worked examples and self-explanation on performance, problem solving, and self-efficacy. Computers and Education, 2007, 49, 809-821.	8.3	125
36	Developing Web-Based, Pedagogical Content Coursework for High School Chemistry Teachers. Journal of Chemical Education, 2007, 84, 1861.	2.3	1

Kent J Crippen

#	Article	IF	CITATIONS
37	Promoting Self-Regulation in Science Education: Metacognition as Part of a Broader Perspective on Learning. Research in Science Education, 2006, 36, 111-139.	2.3	831
38	Science Education in Review: Response to the Secretary's Summit of 2004. Journal of Science Education and Technology, 2005, 14, 143-145.	3.9	3
39	Performance-Related Feedback: The Hallmark of Efficient Instruction. Journal of Chemical Education, 2005, 82, 641.	2.3	13
40	Using an Interactive, Compensatory Model of Learning To Improve Chemistry Teaching. Journal of Chemical Education, 2005, 82, 637.	2.3	40
41	Curriculum Carts and Collaboration: A Model for Training Secondary Science Teachers. Journal of Science Education and Technology, 2004, 13, 325-331.	3.9	6
42	Rethinking Course Assessment: Creating Accountability with Web-Based Tools. Journal of Science Education and Technology, 2003, 12, 431-438.	3.9	3
43	Time and Teaching. Journal of Chemical Education, 2001, 78, 714.	2.3	7
44	Teaching Advanced Placement Descriptive Chemistry: Suggestions from a Testing Web Site. The Chemical Educator, 2001, 6, 266-271.	0.0	0
45	Learning Difficult Content Using the Web: Strategies Make a Difference. Journal of Science Education and Technology, 2001, 10, 283-285.	3.9	3
46	Using Personal Digital Assistants in Clinical Supervision of Student Teachers. Journal of Science Education and Technology, 2000, 9, 207-211.	3.9	8
47	A Web Site Supporting the AP Descriptive Chemistry Question. Journal of Chemical Education, 2000, 77, 1087.	2.3	4
48	Modeling Nuclear Decay: A Point of Integration between Chemistry and Mathematics. Journal of Chemical Education, 1998, 75, 1434.	2.3	1
49	Designing and Delivering Technology Integration to Engage Students. Advances in Educational Marketing, Administration, and Leadership Book Series, 0, , 298-313.	0.2	0
50	Board 160: General Chemistry Laboratory as Situated Engineering Design. , 0, , .		3
51	Board 33: Persistence of First-year Engineering Majors with a Design-based Chemistry Laboratory Curriculum In- and Out-of-Sequence. , 0, , .		2
52	Board 46: The Mentoring Network of K-5 Educators and Engineering Researchers in an RET. , 0, , .		0
53	A Pilot Study of Project-Based Learning in General Chemistry for Engineers. , 0, , .		0