Sandrine Henri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6693066/publications.pdf

Version: 2024-02-01

60 papers

11,242 citations

76031 42 h-index 59 g-index

64 all docs

64
docs citations

times ranked

64

14943 citing authors

#	Article	IF	CITATIONS
1	Targeting colonic macrophages improves glycemic control in high-fat diet-induced obesity. Communications Biology, 2022, 5, 370.	2.0	13
2	Macrophages and Fibroblasts Differentially Contribute to Tattoo Stability. Dermatology, 2021, 237, 296-302.	0.9	7
3	Using gold nanoparticles for enhanced intradermal delivery of poorly soluble auto-antigenic peptides. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102321.	1.7	14
4	ARHGAP45 controls naÃ⁻ve T―and Bâ€cell entry into lymph nodes and Tâ€cell progenitor thymus seeding. EMBO Reports, 2021, 22, e52196.	2.0	14
5	XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nature Medicine, 2021, 27, 1043-1054.	15.2	95
6	Nociceptive sensory neurons promote CD8 T cell responses to HSV-1 infection. Nature Communications, 2021, 12, 2936.	5. 8	26
7	Targeting human langerin promotes HIV-1 specific humoral immune responses. PLoS Pathogens, 2021, 17, e1009749.	2.1	7
8	The transcription factor EGR2 is indispensable for tissue-specific imprinting of alveolar macrophages in health and tissue repair. Science Immunology, 2021, 6, eabj2132.	5.6	23
9	Macrophages Maintain Epithelium Integrity by Limiting Fungal Product Absorption. Cell, 2020, 183, 411-428.e16.	13.5	76
10	Absence of MHC class II on cDC1 dendritic cells triggers fatal autoimmunity to a cross-presented self-antigen. Science Immunology, 2020, 5 , .	5.6	42
11	Lymphatic Endothelial Cells Are Essential Components of the Subcapsular Sinus Macrophage Niche. Immunity, 2019, 50, 1453-1466.e4.	6.6	97
12	Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. Journal of Experimental Medicine, 2018, 215, 1115-1133.	4.2	100
13	The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity, 2018, 49, 312-325.e5.	6.6	172
14	Hapten-Specific T Cell-Mediated Skin Inflammation: Flow Cytometry Analysis of Mouse Skin Inflammatory Infiltrate. Methods in Molecular Biology, 2017, 1559, 21-36.	0.4	4
15	Dissecting antigen processing and presentation routes in dermal vaccination strategies. Vaccine, 2017, 35, 7057-7063.	1.7	2
16	Isolation of Mouse Dendritic Cell Subsets and Macrophages from the Skin. Methods in Molecular Biology, 2016, 1423, 129-137.	0.4	13
17	Broad and Largely Concordant Molecular Changes Characterize Tolerogenic and Immunogenic Dendritic Cell Maturation in Thymus and Periphery. Immunity, 2016, 45, 305-318.	6.6	151
18	Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity, 2016, 45, 669-684.	6.6	683

#	Article	IF	CITATIONS
19	Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1+ DCs in mouse and human and distinguishes them from Langerhans cells. Journal of Immunological Methods, 2016, 432, 35-49.	0.6	50
20	Cervical Lymph Nodes as a Selective Niche for Brucella during Oral Infections. PLoS ONE, 2015, 10, e0121790.	1.1	44
21	Laser-Assisted Intradermal Delivery of Adjuvant-Free Vaccines Targeting XCR1+ Dendritic Cells Induces Potent Antitumoral Responses. Journal of Immunology, 2015, 194, 5895-5902.	0.4	83
22	Vaccine molecules targeting Xcr1 on crossâ€presenting DCs induce protective CD8 ⁺ Tâ€cell responses against influenza virus. European Journal of Immunology, 2015, 45, 624-635.	1.6	98
23	Innate and Adaptive Immune Functions of Peyer's Patch Monocyte-Derived Cells. Cell Reports, 2015, 11, 770-784.	2.9	88
24	Dynamics and Transcriptomics of Skin Dendritic Cells and Macrophages in an Imiquimod-Induced, Biphasic Mouse Model of Psoriasis. Journal of Immunology, 2015, 195, 4953-4961.	0.4	72
25	Mononuclear phagocytes of the intestine, the skin, and the lung. Immunological Reviews, 2014, 262, 9-24.	2.8	91
26	The origins and functions of dendritic cells and macrophages in the skin. Nature Reviews Immunology, 2014, 14, 417-428.	10.6	396
27	TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1497-1502.	3.3	121
28	Progressive replacement of embryo-derived cardiac macrophages with age. Journal of Experimental Medicine, 2014, 211, 2151-2158.	4.2	374
29	Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature Immunology, 2014, 15, 929-937.	7.0	921
30	Origins and Functional Specialization of Macrophages and of Conventional and Monocyte-Derived Dendritic Cells in Mouse Skin. Immunity, 2013, 39, 925-938.	6.6	651
31	Skin Dendritic Cell Targeting <i>via</i> Microneedle Arrays Laden with Antigen-Encapsulated Poly- <scp>d</scp> , <scp>l</scp> -lactide- <i>co</i> -Glycolide Nanoparticles Induces Efficient Antitumor and Antiviral Immune Responses. ACS Nano, 2013, 7, 2042-2055.	7.3	192
32	Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. Journal of Experimental Medicine, 2013, 210, 1977-1992.	4.2	976
33	CD64 Expression Distinguishes Monocyte-Derived and Conventional Dendritic Cells and Reveals Their Distinct Role during Intramuscular Immunization. Journal of Immunology, 2012, 188, 1751-1760.	0.4	243
34	<scp>CD</scp> 64 distinguishes macrophages from dendritic cells in the gut and reveals the <scp>T</scp> h1â€inducing role of mesenteric lymph node macrophages during colitis. European Journal of Immunology, 2012, 42, 3150-3166.	1.6	430
35	<i>Salmonella</i> detoxifying enzymes are sufficient to cope with the host oxidative burst. Molecular Microbiology, 2011, 80, 628-640.	1.2	101
36	The earliest intrathymic precursors of CD8α ⁺ thymic dendritic cells correspond to myeloidâ€type doubleâ€negative 1c cells. European Journal of Immunology, 2011, 41, 2165-2175.	1.6	43

#	Article	IF	CITATIONS
37	Cutting Edge: Expression of XCR1 Defines Mouse Lymphoid-Tissue Resident and Migratory Dendritic Cells of the CD8I±+ Type. Journal of Immunology, 2011, 187, 4411-4415.	0.4	202
38	Disrupted Lymph Node and Splenic Stroma in Mice with Induced Inflammatory Melanomas Is Associated with Impaired Recruitment of T and Dendritic Cells. PLoS ONE, 2011, 6, e22639.	1.1	28
39	Skin-draining lymph nodes contain dermis-derived CD103â^' dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood, 2010, 115, 1958-1968.	0.6	286
40	From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. European Journal of Immunology, 2010, 40, 2089-2094.	1.6	120
41	Disentangling the complexity of the skin dendritic cell network. Immunology and Cell Biology, 2010, 88, 366-375.	1.0	92
42	Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunological Reviews, 2010, 234, 177-198.	2.8	177
43	CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. Journal of Experimental Medicine, 2010, 207, 189-206.	4.2	350
44	Pathogenic Bacteria and Dead Cells Are Internalized by a Unique Subset of Peyer's Patch Dendritic Cells That Express Lysozyme. Gastroenterology, 2010, 138, 173-184.e3.	0.6	94
45	IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. Journal of Clinical Investigation, 2009, 119, 2379-87.	3.9	196
46	The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. Journal of Experimental Medicine, 2007, 204, 3119-3131.	4.2	379
47	Mature DC from skin and skin-draining LN retain the ability to acquire and efficiently present targeted antigen. European Journal of Immunology, 2007, 37, 1184-1193.	1.6	23
48	Dynamics and Function of Langerhans Cells In Vivo. Immunity, 2005, 22, 643-654.	6.6	870
49	Dendritic Cell Populations in Leishmania major -Infected Skin and Draining Lymph Nodes. Infection and Immunity, 2004, 72, 1991-2001.	1.0	55
50	Dendritic Cells Capture and Efficiently Present Antigen Encapsulated in Liposomes to T Cells In Vivo. Journal of Liposome Research, 2003, 13, 21-23.	1.5	3
51	IFN-Î ³ Polymorphisms (IFN-Î ³ +2109 and IFN-Î ³ +3810) Are Associated with Severe Hepatic Fibrosis in Human Hepatic Schistosomiasis (Schistosoma mansoni). Journal of Immunology, 2003, 171, 5596-5601.	0.4	83
52	Hierarchy of Susceptibility of Dendritic Cell Subsets to Infection by Leishmania major: Inverse Relationship to Interleukin-12 Production. Infection and Immunity, 2002, 70, 3874-3880.	1.0	45
53	Mouse Plasmacytoid Cells. Journal of Experimental Medicine, 2002, 196, 1307-1319.	4.2	347
54	Cytokine Regulation of Periportal Fibrosis in Humans Infected with <i>Schistosoma mansoni</i> Is Associated with Protection Against Fibrosis and TNF-α with Aggravation of Disease. Journal of Immunology, 2002, 169, 929-936.	0.4	173

SANDRINE HENRI

#	Article	IF	CITATIONS
55	Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood, 2002, 100, 1734-1741.	0.6	386
56	Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood, 2002, 100, 1734-41.	0.6	160
57	The Dendritic Cell Populations of Mouse Lymph Nodes. Journal of Immunology, 2001, 167, 741-748.	0.4	408
58	Infection and disease in human schistosomiasis mansoni are under distinct major gene control. Microbes and Infection, 1999, 1, 561-567.	1.0	47
59	Severe Hepatic Fibrosis in Schistosoma mansoni Infection Is Controlled by a Major Locus That Is Closely Linked to the Interferon-Î ³ Receptor Gene. American Journal of Human Genetics, 1999, 65, 709-721.	2.6	198
60	Macrophages Maintain Epithelial Barrier Integrity in the Distal Colon by Limiting the Absorption of Fluids Containing Fungal Products. SSRN Electronic Journal, 0, , .	0.4	0