Ting Du

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6693057/ting-du-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16
papers595
citations9
h-index18
g-index18
ext. papers797
ext. citations6.7
avg, IF3.99
L-index

#	Paper	IF	Citations
16	Production and Characterization of a Novel Low-Sugar Beverage from Red Jujube Fruits and Bamboo Shoots Fermented with Selected. <i>Foods</i> , 2021 , 10,	4.9	2
15	A photothermal and self-induced Fenton dual-modal antibacterial platform for synergistic enhanced bacterial elimination. <i>Applied Catalysis B: Environmental</i> , 2021 , 295, 120315	21.8	6
14	Protective effect and mechanism of Monascus-fermented red yeast rice against colitis caused by Salmonella enterica serotype Typhimurium ATCC 14028. <i>Food and Function</i> , 2020 , 11, 6363-6375	6.1	4
13	Comparative Proteomic Analysis of Adhesion/Invasion Related Proteins in Based on Data-Independent Acquisition Coupled With LC-MS/MS. <i>Frontiers in Microbiology</i> , 2020 , 11, 1239	5.7	1
12	Protective Effect of Recombinant Proteins of During Pregnancy on the Offspring. <i>Frontiers in Cellular and Infection Microbiology</i> , 2020 , 10, 15	5.9	1
11	Gold/Silver Hybrid Nanoparticles with Enduring Inhibition of Coronavirus Multiplication through Multisite Mechanisms. <i>Bioconjugate Chemistry</i> , 2020 , 31, 2553-2563	6.3	15
10	Antibacterial Activity of Manganese Dioxide Nanosheets by ROS-Mediated Pathways and Destroying Membrane Integrity. <i>Nanomaterials</i> , 2020 , 10,	5.4	12
9	Engineering Nanoparticles for Optimized Photodynamic Therapy. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 6342-6354	5.5	35
8	Glutathione-Capped AgS Nanoclusters Inhibit Coronavirus Proliferation through Blockage of Viral RNA Synthesis and Budding. <i>ACS Applied Materials & Discrete Supplied Materials & Discrete</i>	9.5	104
7	Preparation of Modified Konjac Glucomannan Nanoparticles and their Application as Vaccine Adjuvants to Promote Ovalbumin-Induced Immune Response in Mice. <i>Pharmaceutical Research</i> , 2018 , 35, 105	4.5	6
6	Antiviral Activity of Graphene Oxide-Silver Nanocomposites by Preventing Viral Entry and Activation of the Antiviral Innate Immune Response <i>ACS Applied Bio Materials</i> , 2018 , 1, 1286-1293	4.1	62
5	Antibacterial Activity of Graphene Oxide/g-C3N4 Composite through Photocatalytic Disinfection under Visible Light. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 8693-8701	8.3	169
4	Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014. <i>Veterinary Microbiology</i> , 2016 , 196, 98-106	3.3	68
3	Carbon dots as inhibitors of virus by activation of type I interferon response. <i>Carbon</i> , 2016 , 110, 278-28	5 10.4	82
2	Probing the interactions of CdTe quantum dots with pseudorabies virus. <i>Scientific Reports</i> , 2015 , 5, 164	03 .9	20
1	Evaluation of Biological Toxicity of CdTe Quantum Dots with Different Coating Reagents according to Protein Expression of EngineeringEscherichia coli. <i>Journal of Nanomaterials</i> , 2015 , 2015, 1-7	3.2	4