
Po-Wen Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6692561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution. Chemical Engineering Journal, 2022, 430, 132853.	12.7	44
2	Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon. Nano Energy, 2022, 93, 106809.	16.0	110
3	Chromatic Fulleropyrrolidine as Longâ€Lived Metalâ€Free Catalyst for CO ₂ Photoreduction Reaction. ChemSusChem, 2022, 15, .	6.8	4
4	Photocatalytic CO2 reduction for C2-C3 oxy-compounds on ZIF-67 derived carbon with TiO2. Journal of CO2 Utilization, 2022, 58, 101920.	6.8	8
5	Connecting Molecular and Supramolecular Shapeshifting by the Ostwald's Nucleation Stages of a Star Giant Molecule. Journal of the American Chemical Society, 2022, , .	13.7	0
6	Silica-Supported Nanoscale Hydrotalcite-Derived Oxides for C4 Chemicals from Ethanol Condensation. ACS Applied Nano Materials, 2022, 5, 7885-7895.	5.0	3
7	Solution-Processable Naphthalene Diimide-Based Conjugated Polymers as Organocatalysts for Photocatalytic CO ₂ Reaction with Extremely Stable Catalytic Activity for Over 330 Hours. Chemistry of Materials, 2022, 34, 4955-4963.	6.7	8
8	Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie, 2021, 133, 19293-19303.	2.0	6
9	Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie - International Edition, 2021, 60, 19144-19154.	13.8	11
10	Frontispiece: Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
11	Frontispiz: Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie, 2021, 133, .	2.0	0
12	The oversolubility of methane gas in nano-confined water in nanoporous silica materials. Microporous and Mesoporous Materials, 2020, 293, 109793.	4.4	15
13	Understanding catalytic hydrogenolysis of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) using carbon supported Ru catalysts. Fuel Processing Technology, 2020, 199, 106225.	7.2	40
14	Hydrophobic Copper Catalysts Derived from Copper Phyllosilicates in the Hydrogenation of Levulinic Acid to Î ³ -Valerolactone. ACS Applied Materials & Interfaces, 2020, 12, 54851-54861.	8.0	20
15	KSCN-induced Interfacial Dipole in Black TiO ₂ for Enhanced Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2019, 11, 25186-25194.	8.0	54
16	Understanding the production of 5-hydroxymethylfurfural (HMF) from chitosan using solid acids. Molecular Catalysis, 2019, 479, 110627.	2.0	15
17	Unsupported and silica-supported perovskite-type lanthanum manganite and lanthanum ferrite in the conversion of ethanol. Fuel Processing Technology, 2019, 194, 106117.	7.2	11
18	Chemical Transformation for 5-Hydroxymethylfurfural Production from Saccharides Using Molten Salt System. ACS Sustainable Chemistry and Engineering, 2018, 6, 5712-5717.	6.7	24

PO-WEN CHUNG

#	Article	IF	CITATIONS
19	Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nature Communications, 2018, 9, 169.	12.8	350
20	The Aldolization Nature of Mn4+-Nonstoichiometric Oxygen Pair Sites of Perovskite-Type LaMnO3 in the Conversion of Ethanol. ACS Sustainable Chemistry and Engineering, 2018, 6, 11949-11958.	6.7	12
21	Frontispiece: Weak-Acid Sites Catalyze the Hydrolysis of Crystalline Cellulose to Glucose in Water: Importance of Post-Synthetic Functionalization of the Carbon Surface. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	13.8	0
22	Weakâ€Acid Sites Catalyze the Hydrolysis of Crystalline Cellulose to Glucose in Water: Importance of Post‧ynthetic Functionalization of the Carbon Surface. Angewandte Chemie - International Edition, 2015, 54, 11050-11053.	13.8	74
23	Importance of Internal Porosity for Glucan Adsorption in Mesoporous Carbon Materials. Langmuir, 2015, 31, 7288-7295.	3.5	30
24	Long-Chain Glucan Adsorption and Depolymerization in Zeolite-Templated Carbon Catalysts. ACS Catalysis, 2015, 5, 6422-6425.	11.2	62
25	Catalytic Hydrolysis of Cellulose to Glucose Using Weak-Acid Surface Sites on Postsynthetically Modified Carbon. ACS Sustainable Chemistry and Engineering, 2014, 2, 2866-2872.	6.7	61
26	Hydrolysis Catalysis of <i>Miscanthus</i> Xylan to Xylose Using Weak-Acid Surface Sites. ACS Catalysis, 2014, 4, 302-310.	11.2	70
27	Glucan Adsorption on Mesoporous Carbon Nanoparticles: Effect of Chain Length and Internal Surface. Langmuir, 2012, 28, 15222-15232.	3.5	89
28	Mesoporous Silica Nanoparticleâ€Stabilized and Manganeseâ€Modified Rhodium Nanoparticles as Catalysts for Highly Selective Synthesis of Ethanol and Acetaldehyde from Syngas. ChemCatChem, 2012, 4, 674-680.	3.7	28
29	Ordered Mesoporous Polymerâ^'Silica Hybrid Nanoparticles as Vehicles for the Intracellular Controlled Release of Macromolecules. ACS Nano, 2011, 5, 360-366.	14.6	95
30	Facile Synthesis of Monodisperse Spherical MCM-48 Mesoporous Silica Nanoparticles with Controlled Particle Size. Chemistry of Materials, 2010, 22, 5093-5104.	6.7	248
31	Temperature Responsive Solution Partition of Organic–Inorganic Hybrid Poly(<i>N</i> â€isopropylacrylamide)â€Coated Mesoporous Silica Nanospheres. Advanced Functional Materials, 2008, 18, 1390-1398.	14.9	129
32	Structurally Ordered Mesoporous Carbon Nanoparticles as Transmembrane Delivery Vehicle in Human Cancer Cells. Nano Letters, 2008, 8, 3724-3727.	9.1	258
33	Exploration of complex multilayer film growth morphologies: STM analysis and predictive atomistic modeling for Ag on Ag(111). Physical Review B, 2008, 77, .	3.2	24
34	Temperature dependence of island growth shapes during submonolayer deposition ofAgonAg(111). Physical Review B, 2005, 71, .	3.2	53
35	Alkaline-earth metal fluoroalkoxide complexes with multi-coordinated polyether appendage: synthesis and characterization. Inorganica Chimica Acta, 2002, 334, 172-182.	2.4	19
	Synthesis and characterization of two novel tetranuclear sodium betaining to complexes: structural		

Synthesis and characterization of two novel tetranuclear sodium ketoiminate complexes; structural evidence for formation of dative Na  ·â€...·â€...·â€Šâ€ŠF and Na–C (olefin) bonding interactions. Dalto¤.īransactians RSC, 2000, , 343-347.