Matej Sova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6691313/publications.pdf Version: 2024-02-01

Μάτει δουλ

#	Article	IF	CITATIONS
1	ProBiS-Dock: A Hybrid Multitemplate Homology Flexible Docking Algorithm Enabled by Protein Binding Site Comparison. Journal of Chemical Information and Modeling, 2022, 62, 1573-1584.	2.5	4
2	Indoleamine and tryptophan 2,3-dioxygenases as important future therapeutic targets. , 2021, 221, 107746.		34
3	Microwave-Assisted Regioselective Suzuki Coupling of 2,4-Dichloropyrimidines with Aryl and Heteroaryl Boronic Acids. Catalysts, 2021, 11, 439.	1.6	3
4	Novel Selective IDO1 Inhibitors with Isoxazolo[5,4-d]pyrimidin-4(5H)-one Scaffold. Pharmaceuticals, 2021, 14, 265.	1.7	6
5	Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in Cancer Therapy. Antioxidants, 2021, 10, 685.	2.2	28
6	Synthesized 2-Trifluoromethylquinazolines and Quinazolinones Protect BV2 and N2a Cells against LPS- and H2O2-induced Cytotoxicity. Medicinal Chemistry, 2021, 17, 623-629.	0.7	4
7	4-Phenethyl-1-Propargylpiperidine-Derived Dual Inhibitors of Butyrylcholinesterase and Monoamine Oxidase B. Molecules, 2021, 26, 4118.	1.7	5
8	Further hit optimization of 6-(trifluoromethyl)pyrimidin-2-amine based TLR8 modulators: Synthesis, biological evaluation and structure–activity relationships. European Journal of Medicinal Chemistry, 2021, 225, 113809.	2.6	2
9	Synthesis and Evaluation of Antioxidant Properties of 2-Substituted Quinazolin-4(3H)-ones. Molecules, 2021, 26, 6585.	1.7	8
10	Drug Delivery Strategies for Curcumin and Other Natural Nrf2 Modulators of Oxidative Stress-Related Diseases. Pharmaceutics, 2021, 13, 2137.	2.0	19
11	Stereoselective Activity of 1-Propargyl-4-styrylpiperidine-like Analogues That Can Discriminate between Monoamine Oxidase Isoforms A and B. Journal of Medicinal Chemistry, 2020, 63, 1361-1387.	2.9	33
12	Synthesis, In Vitro Antioxidant Properties and Distribution of a New Cyanothiophene-Based Phenolic Compound in Olive Oil-In-Water Emulsions. Antioxidants, 2020, 9, 623.	2.2	2
13	Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites. Nutrients, 2020, 12, 2190.	1.7	95
14	Natural and Synthetic Derivatives of Hydroxycinnamic Acid Modulating the Pathological Transformation of Amyloidogenic Proteins. Molecules, 2020, 25, 4647.	1.7	22
15	Efficient and Straightforward Syntheses of Two United States Pharmacopeia Sitagliptin Impurities: 3-Desamino-2,3-dehydrositagliptin and 3-Desamino-3,4-dehydrositagliptin. ACS Omega, 2020, 5, 5356-5364.	1.6	5
16	Selective Toll-like receptor 7 agonists with novel chromeno[3,4-d]imidazol-4(1H)-one and 2-(trifluoromethyl)quinoline/ quinazoline-4-amine scaffolds. European Journal of Medicinal Chemistry, 2019, 179, 109-122.	2.6	18
17	Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1010-1017.	2.5	12
18	Reaching toward underexplored targets in antibacterial drug design. Drug Development Research, 2019, 80, 6-10.	1.4	28

Μάτει Sova

#	Article	IF	CITATIONS
19	Design and development of Nrf2 modulators for cancer chemoprevention and therapy: a review. Drug Design, Development and Therapy, 2018, Volume 12, 3181-3197.	2.0	67
20	Antimicrobial activity of <i>trans</i> -cinnamic acid and commonly used antibiotics against important fish pathogens and nonpathogenic isolates. Journal of Applied Microbiology, 2018, 125, 1714-1727.	1.4	53
21	Multi-target-directed ligands for treating Alzheimer's disease: Butyrylcholinesterase inhibitors displaying antioxidant and neuroprotective activities. European Journal of Medicinal Chemistry, 2018, 156, 598-617.	2.6	72
22	Anthranilic Acid Inhibitors of Undecaprenyl Pyrophosphate Synthase (UppS), an Essential Enzyme for Bacterial Cell Wall Biosynthesis. Frontiers in Microbiology, 2018, 9, 3322.	1.5	8
23	Discovery of new MurA inhibitors using induced-fit simulation and docking. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 944-949.	1.0	24
24	Dual inhibitors of cholinesterases and monoamine oxidases for Alzheimer's disease. Future Medicinal Chemistry, 2017, 9, 811-832.	1.1	44
25	Synthesis and structure–activity relationship study of novel quinazolinone-based inhibitors of MurA. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3529-3533.	1.0	46
26	Synthesis and Biological Evaluation of N-Aryl-N'-(5-(2-hydroxybenzoyl) pyrimidin-2-yl)guanidines as Toll-Like Receptor 4 Antagonists. Medicinal Chemistry, 2016, 12, 742-750.	0.7	4
27	<scp>D</scp> â€Glucosamine in ironâ€catalysed crossâ€coupling reactions of Grignards with allylic and vinylic bromides: application to the synthesis of a key sitagliptin precursor. Applied Organometallic Chemistry, 2015, 29, 528-535.	1.7	18
28	Cobalt-Catalyzed Cross-Coupling of Grignards with Allylic and Vinylic Bromides: Use of Sarcosine as a Natural Ligand. Journal of Organic Chemistry, 2015, 80, 7803-7809.	1.7	30
29	Benzoic acid derivatives with improved antifungal activity: Design, synthesis, structure–activity relationship (SAR) and CYP53 docking studies. Bioorganic and Medicinal Chemistry, 2015, 23, 4264-4276.	1.4	17
30	Structure–Activity Relationships of Novel Tryptamine-Based Inhibitors of Bacterial Transglycosylase. Journal of Medicinal Chemistry, 2015, 58, 9712-9721.	2.9	21
31	Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). Journal of Applied Microbiology, 2014, 116, 955-966.	1.4	67
32	Novel toll-like receptor 4 (TLR4) antagonists identified by structure- and ligand-based virtual screening. European Journal of Medicinal Chemistry, 2013, 70, 393-399.	2.6	35
33	Cinnamic Acid Derivatives Induce Cell Cycle Arrest in Carcinoma Cell Lines. Medicinal Chemistry, 2013, 9, 633-641.	0.7	22
34	Antioxidant and Antimicrobial Activities of Cinnamic Acid Derivatives. Mini-Reviews in Medicinal Chemistry, 2012, 12, 749-767.	1.1	389
35	(Z)-5-(4-Fluorophenyl)pent-4-enoic Acid: A Precursor for Convenient and Efficient Synthesis of the Antihypercholesterolemia Agent Ezetimibe. Synthesis, 2010, 2010, 3433-3438.	1.2	9
36	Novel inhibitors of β-ketoacyl-ACP reductase from Escherichia coli. Chemico-Biological Interactions, 2009, 178, 310-316.	1.7	18

Μάτει Sova

#	Article	IF	CITATIONS
37	Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorganic Chemistry, 2009, 37, 217-222.	2.0	39
38	Design and synthesis of new hydroxyethylamines as inhibitors of d-alanyl-d-lactate ligase (VanA) and d-alanyl-d-alanine ligase (DdlB). Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1376-1379.	1.0	41
39	Flavonoids and cinnamic acid derivatives as inhibitors of 17β-hydroxysteroid dehydrogenase type 1. Molecular and Cellular Endocrinology, 2009, 301, 229-234.	1.6	48
40	Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiology Reviews, 2008, 32, 168-207.	3.9	583
41	New inhibitors of fungal 17β-hydroxysteroid dehydrogenase based on the [1,5]-benzodiazepine scaffold. Journal of Enzyme Inhibition and Medicinal Chemistry, 2007, 22, 29-36.	2.5	3
42	Microwave-assisted synthesis of hydroxyethylamine dipeptide isosteres. Tetrahedron, 2007, 63, 141-147.	1.0	12
43	Flavonoids and cinnamic acid esters as inhibitors of fungal 17β-hydroxysteroid dehydrogenase: A synthesis, QSAR and modelling study. Bioorganic and Medicinal Chemistry, 2006, 14, 7404-7418.	1.4	40
44	Epoxide opening with amino acids: improved synthesis of hydroxyethylamine dipeptide isosteres. Tetrahedron Letters, 2006, 47, 1733-1735.	0.7	15
45	Cinnamic acid esters as potent inhibitors of fungal 17β-hydroxysteroid dehydrogenase––a model enzyme of the short-chain dehydrogenase/reductase superfamily. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3933-3936.	1.0	25
46	Cinnamic Acid Esters as Potent Inhibitors of Fungal 17β-Hydroxysteroid Dehydrogenase — A Model Enzyme of the Short-Chain Dehydrogenase/Reductase Superfamily. ChemInform, 2004, 35, no.	0.1	0