Xiaojun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/669085/publications.pdf

Version: 2024-02-01

759233 752698 24 425 12 20 citations h-index g-index papers 24 24 24 360 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Chitosan and procyanidin composite films with high antioxidant activity and pH responsivity for cheese packaging. Food Chemistry, 2021, 338, 128013.	8.2	56
2	A facile approach to prepare biomass-derived activated carbon hollow fibers from wood waste as high-performance supercapacitor electrodes. Cellulose, 2018, 25, 4743-4755.	4.9	47
3	Pretreatment of lignocellulosic feedstock to produce fermentable sugars for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production using activated sludge. Bioresource Technology, 2019, 290, 121773.	9.6	38
4	Preparation and characterization of a bionanocomposite from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) and cellulose nanocrystals. Cellulose, 2019, 26, 979-990.	4.9	33
5	Towards biodegradable polyhydroxyalkanoate production from wood waste: Using volatile fatty acids as conversion medium. Bioresource Technology, 2020, 299, 122629.	9.6	29
6	Crystallization, mechanical and UV protection properties of graphene oxide/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biocomposites. Journal of Materials Science, 2019, 54, 14388-14399.	3.7	19
7	Improvement in thermal, mechanical, and barrier properties of biocomposite of poly (3â€hydroxybutyrateâ€coâ€3â€hydroxyhexanoate)/modified nanoâ€siO ₂ . Polymer Composites, 20:41, 381-390.	204.6	19
8	Green carbon quantum dots from sustainable lignocellulosic biomass and its application in the detection of Fe3+. Cellulose, 2022, 29, 367-378.	4.9	18
9	Fabrication of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biocomposite reinforced wood fiber modified with mixed coupling agents CS-201 and KH550. Industrial Crops and Products, 2021, 164, 113352.	5.2	17
10	Achieving valorization of fermented activated sludge using pretreated waste wood feedstock for volatile fatty acids accumulation. Bioresource Technology, 2019, 290, 121791.	9.6	16
11	Enhanced mechanical, thermal, and barrier properties of poly (3â€hydroxybutyrateâ€coâ€3â€hydroxyhexanoate)/montmorillonite nanocomposites using silane coupling agent. Polymer Composites, 2020, 41, 4538-4549.	4.6	16
12	Synthesis of a novel biocomposite of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with acetylated cellulose nanocrystals. Cellulose, 2019, 26, 8729-8743.	4.9	14
13	Synergistic reinforcing effect of nano-montmorillonite and cellulose nanocrystals on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Cellulose, 2020, 27, 6249-6261.	4.9	13
14	Preparation and properties of biocomposite from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with regenerated cellulose. Cellulose, 2019, 26, 5427-5436.	4.9	12
15	ControllableÂpreparation of hierarchical porous carbon aerogel from liquefied wood for supercapacitors. Journal of Materials Science, 2022, 57, 1947-1961.	3.7	11
16	Facile synthesis of Mn/N-doped TiO2 on wood-based activated carbon fiber as an efficient visible-light-driven photocatalyst. Journal of Materials Science, 2018, 53, 11671-11683.	3.7	10
17	In situ hydrothermal synthesis of α-MnO2 nanowire/activated carbon hollow fibers from cotton stalk composite: dual-effect cyclic visible light photocatalysis performance. Cellulose, 2020, 27, 8937-8948.	4.9	10
18	Preparation of N, P self-doped activated carbon hollow fibers derived from liquefied wood. Wood Science and Technology, 2021, 55, 83-93.	3.2	10

XIAOJUN

#	Article	IF	CITATIONS
19	Toward sustainable biocomposites based on MMT and PHBH reinforced with acetylated cellulose nanocrystals. Cellulose, 2021, 28, 2981-2993.	4.9	10
20	Achieving polyhydroxyalkanoate production from rubber wood waste using mixed microbial cultures and anaerobic–aerobic feeding regime. International Journal of Biological Macromolecules, 2022, 199, 162-171.	7.5	8
21	Improvement of electrochemical properties of activated carbon hollow fibers from liquefied wood by charcoal power. Materials Letters, 2019, 255, 126544.	2.6	7
22	Accumulation of bioplastic polyhydroxyalkanoate with different substrate forms from pretreated waste lignocellulose hydrolysate. Industrial Crops and Products, 2021, 172, 114061.	5 . 2	5
23	Investigation on improvement of thermal, mechanical, and barrier properties of lignin/poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyhexanoate) using inorganic nanoparticles as fillers. Polymer Composites, 2022, 43, 7871-7881.	4.6	5
24	Insight into the complex coupling agents on thermal, mechanical, and barrier properties of ligninâ∈poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyhexanoate) biocomposites. Polymer Composites, 2022, 43, 2431-2439.	4.6	2