
Deborah B Zamble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6690832/publications.pdf Version: 2024-02-01

DEBODAH R ZAMBLE

#	Article	IF	CITATIONS
1	Cisplatin and DNA repair in cancer chemotherapy. Trends in Biochemical Sciences, 1995, 20, 435-439.	3.7	458
2	HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10394-10398.	3.3	325
3	Repair of Cisplatinâ^'DNA Adducts by the Mammalian Excision Nucleaseâ€. Biochemistry, 1996, 35, 10004-10013.	1.2	316
4	Nickel Homeostasis and Nickel Regulation: An Overview. Chemical Reviews, 2009, 109, 4617-4643.	23.0	187
5	The polymerization behavior of [1]- and [2]ferrocenophanes containing silicon atoms in the bridge: comparison of the molecular structure of the strained, polymerizable cyclic ferrocenylsilane Fe(.etaC5H4)2(SiMe2) with that of the cyclic ferrocenyldisilane Fe(.etaC5H4)2(SiMe2)2. Organometallics. 1993. 12. 823-829.	1.1	153
6	The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition11Edited by J. Karn. Journal of Molecular Biology, 2001, 307, 1223-1234.	2.0	135
7	p53-dependent and -independent responses to cisplatin in mouse testicular teratocarcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6163-6168.	3.3	134
8	NikR-operator complex structure and the mechanism of repressor activation by metal ions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13676-13681.	3.3	117
9	A Role for SlyD in the Escherichia coli Hydrogenase Biosynthetic Pathway. Journal of Biological Chemistry, 2005, 280, 4360-4366.	1.6	116
10	[NiFe]-Hydrogenase Maturation. Biochemistry, 2016, 55, 1689-1701.	1.2	101
11	Metallocenter assembly of the hydrogenase enzymes. Current Opinion in Chemical Biology, 2007, 11, 159-165.	2.8	94
12	Microbial nickel proteins. Natural Product Reports, 2010, 27, 681.	5.2	91
13	Human Testis-Determining Factor SRY Binds to the Major DNA Adduct of Cisplatin and a Putative Target Sequence with Comparable Affinitiesâ€. Biochemistry, 1998, 37, 352-362.	1.2	89
14	Selectivity of Metal Binding and Metal-Induced Stability ofEscherichia coliNikRâ€. Biochemistry, 2004, 43, 10018-10028.	1.2	88
15	Testis-specific HMG-domain protein alters the responses of cells to cisplatin. Journal of Inorganic Biochemistry, 2002, 91, 451-462.	1.5	79
16	Metal-Selective DNA-Binding Response ofEscherichia coliNikRâ€. Biochemistry, 2004, 43, 10029-10038.	1.2	77
17	Metal Binding Activity of the Escherichia coli Hydrogenase Maturation Factor HypB. Biochemistry, 2005, 44, 12229-12238.	1.2	75
18	Escherichia coli HypA Is a Zinc Metalloprotein with a Weak Affinity for Nickel. Journal of Bacteriology, 2005, 187, 4689-4697.	1.0	71

DEBORAH B ZAMBLE

#	Article	IF	CITATIONS
19	The Role of Complex Formation between the Escherichia coli Hydrogenase Accessory Factors HypB and SlyD. Journal of Biological Chemistry, 2007, 282, 16177-16186.	1.6	71
20	The metal- and DNA-binding activities of Helicobacter pylori NikR. Journal of Inorganic Biochemistry, 2006, 100, 1005-1014.	1.5	59
21	Structural Basis of the Metal Specificity for Nickel Regulatory Protein NikR,. Biochemistry, 2008, 47, 1938-1946.	1.2	54
22	Relationship between Ni(II) and Zn(II) Coordination and Nucleotide Binding by the Helicobacter pylori [NiFe]-Hydrogenase and Urease Maturation Factor HypB. Journal of Biological Chemistry, 2014, 289, 3828-3841.	1.6	51
23	YeiR: a metal-binding GTPase from Escherichia coli involved in metal homeostasis. Metallomics, 2012, 4, 488.	1.0	49
24	Structural and Biological Analysis of the Metal Sites of <i>Escherichia coli</i> Hydrogenase Accessory Protein HypB. Biochemistry, 2008, 47, 11981-11991.	1.2	45
25	<i>Escherichia coli</i> SlyD, More Than a Ni(II) Reservoir. Biochemistry, 2011, 50, 10761-10763.	1.2	43
26	Metal Binding Properties of <i>Escherichia coli</i> YjiA, a Member of the Metal Homeostasis-Associated COG0523 Family of GTPases. Biochemistry, 2013, 52, 1788-1801.	1.2	43
27	Microbial nickel: cellular uptake and delivery to enzyme centers. Current Opinion in Chemical Biology, 2017, 37, 80-88.	2.8	43
28	Mechanism of Selective Nickel Transfer from HypB to HypA, <i>Escherichia coli</i> [NiFe]-Hydrogenase Accessory Proteins. Biochemistry, 2016, 55, 6821-6831.	1.2	42
29	The Ni(II)-Binding Properties of the Metallochaperone SlyD. Journal of the American Chemical Society, 2009, 131, 18489-18500.	6.6	39
30	Protein Interactions and Localization of the Escherichia coli Accessory Protein HypA during Nickel Insertion to [NiFe] Hydrogenase. Journal of Biological Chemistry, 2011, 286, 43081-43090.	1.6	39
31	Metal Transfer within the <i>Escherichia coli</i> HypB–HypA Complex of Hydrogenase Accessory Proteins. Biochemistry, 2013, 52, 6030-6039.	1.2	39
32	A High-Affinity Metal-Binding Peptide from <i>Escherichia coli</i> HypB. Journal of the American Chemical Society, 2008, 130, 14056-14057.	6.6	37
33	Nickel Metallomics: General Themes Guiding Nickel Homeostasis. Metal Ions in Life Sciences, 2013, 12, 375-416.	2.8	37
34	A high-performance liquid chromatography method for determining transition metal content in proteins. Analytical Biochemistry, 2004, 335, 103-111.	1.1	34
35	Acid-responsive activity of the <i>Helicobacter pylori</i> metalloregulator NikR. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8966-8971.	3.3	34
36	A High Throughput Method for the Detection of Metalloproteins on a Microgram Scale. Molecular and Cellular Proteomics, 2005, 4, 827-834.	2.5	33

DEBORAH B ZAMBLE

#	Article	IF	CITATIONS
37	Effects of Metal on the Biochemical Properties of <i>Helicobacter pylori</i> HypB, a Maturation Factor of [NiFe]-Hydrogenase and Urease. Journal of Bacteriology, 2011, 193, 1359-1368.	1.0	33
38	pH-Responsive DNA-Binding Activity of Helicobacter pylori NikR. Biochemistry, 2009, 48, 2486-2496.	1.2	32
39	Interactions of theEscherichia colihydrogenase biosynthetic proteins: HybG complex formation. FEBS Letters, 2006, 580, 677-681.	1.3	30
40	The <i>Escherichia coli</i> metal-binding chaperone SlyD interacts with the large subunit of [NiFe]-hydrogenase 3. FEBS Letters, 2011, 585, 291-294.	1.3	29
41	Relationship between the GTPase, metal-binding, and dimerization activities of E. coli HypB. Journal of Biological Inorganic Chemistry, 2011, 16, 857-868.	1.1	29
42	The McbB Component of Microcin B17 Synthetase Is a Zinc Metalloproteinâ€. Biochemistry, 2000, 39, 16190-16199.	1.2	27
43	The Peptidyl-Prolyl Isomerase Activity of SlyD Is Not Required for Maturation of Escherichia coli Hydrogenase. Journal of Bacteriology, 2007, 189, 7942-7944.	1.0	27
44	Nickel Binding and [NiFe]-Hydrogenase Maturation by the Metallochaperone SlyD with a Single Metal-Binding Site in Escherichia coli. Journal of Molecular Biology, 2012, 417, 28-35.	2.0	27
45	The "metallo-specific―response of proteins: A perspective based on the Escherichia coli transcriptional regulator NikR. Dalton Transactions, 2009, , 2459.	1.6	26
46	Allosteric control of metal-responsive transcriptional regulators in bacteria. Journal of Biological Chemistry, 2020, 295, 1673-1684.	1.6	26
47	Protease digestion analysis of Escherichia coli NikR: evidence for conformational stabilization with Ni(II). Journal of Biological Inorganic Chemistry, 2005, 10, 605-612.	1.1	24
48	Nickel-responsive regulation of two novelHelicobacter pyloriNikR-targeted genes. Metallomics, 2015, 7, 662-673.	1.0	22
49	The metal selectivity of a short peptide maquette imitating the high-affinity metal-binding site of E. coli HypB. Dalton Transactions, 2012, 41, 7876.	1.6	19
50	Metal Selectivity of the <i>Escherichia coli</i> Nickel Metallochaperone, SlyD. Biochemistry, 2011, 50, 10666-10677.	1.2	18
51	Potassium Is Critical for the Ni(II)-Responsive DNA-Binding Activity of Escherichia coli NikR. Journal of the American Chemical Society, 2010, 132, 1506-1507.	6.6	14
52	Fluorescence analysis of sulfonamide binding to carbonic anhydrase. Biochemistry and Molecular Biology Education, 2006, 34, 364-368.	0.5	13
53	Microbial Physiology of Nickel and Cobalt. , 2007, , 287-320.		13
54	High-affinity metal binding by the Escherichia coli [NiFe]-hydrogenase accessory protein HypB is selectively modulated by SlyD. Metallomics, 2017, 9, 482-493.	1.0	13

DEBORAH B ZAMBLE

#	Article	IF	CITATIONS
55	The impact of a His-tag on DNA binding by RNA polymerase alpha-C-terminal domain from Helicobacter pylori. Protein Expression and Purification, 2020, 167, 105541.	0.6	13
56	A novel mode of control of nickel uptake by a multifunctional metallochaperone. PLoS Pathogens, 2021, 17, e1009193.	2.1	13
57	Analyzing the 3D Structure of Human Carbonic Anhydrase II and Its Mutants Using Deep View and the Protein Data Bank. Journal of Chemical Education, 2005, 82, 1805.	1.1	12
58	The Response of <i>Escherichia coli</i> NikR to Nickel: A Second Nickel-Binding Site. Biochemistry, 2010, 49, 6635-6645.	1.2	11
59	A whole-cell, high-throughput hydrogenase assay to identify factors that modulate [NiFe]-hydrogenase activity. Journal of Biological Chemistry, 2019, 294, 15373-15385.	1.6	11
60	Nonspecific Interactions Between <i>Escherichia coli</i> NikR and DNA Are Critical for Nickel-Activated DNA Binding. Biochemistry, 2012, 51, 7873-7879.	1.2	10
61	Nickel in Biology. Metallomics, 2015, 7, 588-589.	1.0	10
62	The Response of Cellular Proteins to Cisplatin-Damaged DNA. , 2006, , 71-110.		9
63	Bimodal Nickel-Binding Site on <i>Escherichia coli</i> [NiFe]-Hydrogenase Metallochaperone HypA. Inorganic Chemistry, 2019, 58, 13604-13618.	1.9	8
64	Complex formation between the Escherichia coli [NiFe]-hydrogenase nickel maturation factors. BioMetals, 2019, 32, 521-532.	1.8	8
65	Allosteric regulation of the nickel-responsive NikR transcription factor from Helicobacter pylori. Journal of Biological Chemistry, 2021, 296, 100069.	1.6	7
66	It costs more than a nickel. Science, 2015, 349, 35-36.	6.0	5
67	High Throughput Methods for Analyzing Transition Metals in Proteins on a Microgram ScaleHigh Throughput Methods for Analyzing Transition Metals in Proteins on a Microgram Scale. Methods in Molecular Biology, 2008, 426, 319-330.	0.4	4