
Kristi Snell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6690808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The use of an acetoacetylâ€Co <scp>A</scp> synthase in place of a βâ€ketothiolase enhances polyâ€3â€hydroxybutyrate production in sugarcane mesophyll cells. Plant Biotechnology Journal, 2015, 13, 700-707.	4.1	21
2	Production of high levels of polyâ€3â€hydroxybutyrate in plastids of <i><scp>C</scp>amelina sativa</i> seeds. Plant Biotechnology Journal, 2015, 13, 675-688.	4.1	35
3	Production of novel biopolymers in plants: recent technological advances and future prospects. Current Opinion in Biotechnology, 2015, 32, 68-75.	3.3	49
4	Factors affecting polyhydroxybutyrate accumulation in mesophyll cells of sugarcane and switchgrass. BMC Biotechnology, 2014, 14, 83.	1.7	18
5	Transgene autoexcision in switchgrass pollen mediated by the Bxb1 recombinase. BMC Biotechnology, 2014, 14, 79.	1.7	9
6	Mild pyrolysis of P3HB/switchgrass blends for the production of bio-oil enriched with crotonic acid. Journal of Analytical and Applied Pyrolysis, 2014, 107, 40-45.	2.6	25
7	PHA Bioplastics, Biochemicals, and Energy from Crops. Plant Biotechnology Journal, 2013, 11, 233-252.	4.1	103
8	Enhanced polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnology Journal, 2012, 10, 569-578.	4.1	46
9	High Levels of Bioplastic Are Produced in Fertile Transplastomic Tobacco Plants Engineered with a Synthetic Operon for the Production of Polyhydroxybutyrate. Plant Physiology, 2011, 155, 1690-1708.	2.3	101
10	PHA bioplastic: A valueâ€edded coproduct for biomass biorefineries. Biofuels, Bioproducts and Biorefining, 2009, 3, 456-467.	1.9	113
11	Production of polyhydroxybutyrate in switchgrass, a valueâ€added coâ€product in an important lignocellulosic biomass crop. Plant Biotechnology Journal, 2008, 6, 663-678.	4.1	149
12	Chemically inducible expression of the PHB biosynthetic pathway in Arabidopsis. Transgenic Research, 2007, 16, 759-769.	1.3	41
13	A novel thiolase-reductase gene fusion promotes the production of polyhydroxybutyrate in Arabidopsis. Plant Biotechnology Journal, 2005, 3, 435-447.	4.1	45
14	YfcX Enables Medium-Chain-Length Poly(3-Hydroxyalkanoate) Formation from Fatty Acids in Recombinant Escherichia coli fadB Strains. Journal of Bacteriology, 2002, 184, 5696-5705.	1.0	66
15	Polyhydroxyalkanoate Polymers and Their Production in Transgenic Plants. Metabolic Engineering, 2002, 4, 29-40.	3.6	84
16	Class I and III Polyhydroxyalkanoate Synthases from Ralstonia eutropha and Allochromatium vinosum: Characterization and Substrate Specificity Studies. Archives of Biochemistry and Biophysics, 2001, 394, 87-98.	1.4	134
17	PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nature Biotechnology, 1997, 15, 63-67.	9.4	196
18	Synthetic Modification of theEscherichia coliChromosome:Â Enhancing the Biocatalytic Conversion of Glucose into Aromatic Chemicals, Journal of the American Chemical Society, 1996, 118, 5605-5614.	6.6	49

Kristi Snell

#	Article	IF	CITATIONS
19	Reaction of 3-Dehydroshikimic Acid with Molecular Oxygen and Hydrogen Peroxide:  Products, Mechanism, and Associated Antioxidant Activity. Journal of the American Chemical Society, 1996, 118, 11587-11591.	6.6	23
20	Polyhydroxybutyrate Synthase:Â Evidence for Covalent Catalysis. Journal of the American Chemical Society, 1996, 118, 6319-6320.	6.6	114
21	Identification and removal of impediments to biocatalytic synthesis of aromatics from D-glucose: rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis. Journal of the American Chemical Society, 1993, 115, 11581-11589.	6.6	98