Lixiang Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6690649/publications.pdf

Version: 2024-02-01

LIXIANC ZHONC

#	Article	lF	CITATIONS
1	Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithiumâ€lon Batteries. Advanced Materials, 2022, 34, e2101474.	11.1	140
2	Metalâ€Ion Oligomerization Inside Electrified Carbon Micropores and its Effect on Capacitive Charge Storage. Advanced Materials, 2022, 34, e2107439.	11.1	24
3	Mg-stabilized subnanometer Rh particles in zeolite Beta as highly efficient catalysts for selective hydrogenation. Journal of Catalysis, 2022, 405, 489-498.	3.1	8
4	Synergistic effect of Ru-N4 sites and Cu-N3 sites in carbon nitride for highly selective photocatalytic reduction of CO2 to methane. Applied Catalysis B: Environmental, 2022, 307, 121154.	10.8	57
5	A Defect Engineered Electrocatalyst that Promotes High-Efficiency Urea Synthesis under Ambient Conditions. ACS Nano, 2022, 16, 8213-8222.	7.3	109
6	Enhanced electrochemical CO2-to-C2+ conversion from synergistic interaction between terrace and step sites on monocrystalline high-index Cu facets. Journal of Energy Chemistry, 2022, 70, 382-387.	7.1	9
7	1,3,5â€īriphenylbenzene Based Porous Conjugated Polymers for Highly Efficient Photoreduction of Lowâ€Concentration CO ₂ in the Gasâ€Phase System. Solar Rrl, 2022, 6, .	3.1	8
8	Efficient CO ₂ Electroreduction to Ethanol by Cu ₃ Sn Catalyst. Small Methods, 2022, 6, e2101334.	4.6	39
9	Holey Reduced Graphene Oxide Scaffolded Heterocyclic Aramid Fibers with Enhanced Mechanical Performance. Advanced Functional Materials, 2022, 32, .	7.8	14
10	Reversible Al Metal Anodes Enabled by Amorphization for Aqueous Aluminum Batteries. Journal of the American Chemical Society, 2022, 144, 11444-11455.	6.6	63
11	Product-Specific Active Site Motifs of Cu for Electrochemical CO2 Reduction. CheM, 2021, 7, 406-420.	5.8	72
12	Understanding the Activity of Carbon-Based Single-Atom Electrocatalysts from <i>Ab Initio</i> Simulations. , 2021, 3, 110-120.		19
13	2,4,6â€Triphenylâ€1,3,5â€Triazine Based Covalent Organic Frameworks for Photoelectrochemical H ₂ Evolution. Advanced Materials Interfaces, 2021, 8, 2002191.	1.9	40
14	Enhanced Electrochemical Methanation of Carbon Dioxide at the Single-Layer Hexagonal Boron Nitride/Cu Interfacial Perimeter. Nano Letters, 2021, 21, 4469-4476.	4.5	16
15	Graphdiyne/Graphene Heterostructure: A Universal 2D Scaffold Anchoring Monodispersed Transition-Metal Phthalocyanines for Selective and Durable CO ₂ Electroreduction. Journal of the American Chemical Society, 2021, 143, 8679-8688.	6.6	87
16	Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nature Sustainability, 2021, 4, 868-876.	11.5	264
17	Accurate machine learning models based on small dataset of energetic materials through spatial matrix featurization methods. Journal of Energy Chemistry, 2021, 63, 364-375.	7.1	7
18	Dynamic Restructuring of Cuâ€Doped SnS ₂ Nanoflowers for Highly Selective Electrochemical CO ₂ Reduction to Formate. Angewandte Chemie, 2021, 133, 26437-26441.	1.6	8

LIXIANG ZHONG

#	Article	IF	CITATIONS
19	Dynamic Restructuring of Cuâ€Đoped SnS ₂ Nanoflowers for Highly Selective Electrochemical CO ₂ Reduction to Formate. Angewandte Chemie - International Edition, 2021, 60, 26233-26237.	7.2	66
20	Lattice strain and atomic replacement of CoO6 octahedra in layered sodium cobalt oxide for boosted water oxidation electrocatalysis. Applied Catalysis B: Environmental, 2021, 297, 120477.	10.8	30
21	Boosting the water dissociation kinetics <i>via</i> charge redistribution of ruthenium decorated on S, N-codoped carbon. Journal of Materials Chemistry A, 2021, 9, 16967-16973.	5.2	19
22	First-principles study of the anisotropic thermal expansion and thermal transport properties in h-BN. Science China Materials, 2021, 64, 953-963.	3.5	14
23	Boosting Electrocatalytic Ammonia Production through Mimicking "π Back-Donation― CheM, 2020, 6, 2690-2702.	5.8	88
24	Hollow "graphene―microtubes using polyacrylonitrile nanofiber template and potential applications of field emission. Carbon, 2020, 167, 439-445.	5.4	3
25	Unconventional Oxygen Reduction Reaction Mechanism and Scaling Relation on Single-Atom Catalysts. ACS Catalysis, 2020, 10, 4313-4318.	5.5	119
26	Atomic Pd on Graphdiyne/Graphene Heterostructure as Efficient Catalyst for Aromatic Nitroreduction. Advanced Functional Materials, 2019, 29, 1905423.	7.8	112
27	Crystal phase effect upon O ₂ activation on gold surfaces through intrinsic strain. Nanoscale, 2019, 11, 14587-14591.	2.8	3
28	Interfacing Epitaxial Dinickel Phosphide to 2D Nickel Thiophosphate Nanosheets for Boosting Electrocatalytic Water Splitting. ACS Nano, 2019, 13, 7975-7984.	7.3	171
29	Interfacial Latticeâ€Strainâ€Driven Generation of Oxygen Vacancies in an Aerobicâ€Annealed TiO ₂ (B) Electrode. Advanced Materials, 2019, 31, e1906156.	11.1	53
30	Ru@UiO-66(Ce) catalyzed acceptorless dehydrogenation of primary amines to nitriles: the roles of Lewis acid–base pairs in the reaction. Green Chemistry, 2019, 21, 5386-5393.	4.6	37
31	Triphenylamine based conjugated microporous polymers for selective photoreduction of CO ₂ to CO under visible light. Green Chemistry, 2019, 21, 6606-6610.	4.6	58
32	Electrode Materials: Interfacial Latticeâ€Strainâ€Driven Generation of Oxygen Vacancies in an Aerobicâ€Annealed TiO ₂ (B) Electrode (Adv. Mater. 52/2019). Advanced Materials, 2019, 31, 1970367.	11.1	9
33	Realizing Ultralow Concentration Gelation of Graphene Oxide with Artificial Interfaces. Advanced Materials, 2019, 31, e1805075.	11.1	16
34	Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets. Nano Energy, 2018, 47, 257-265.	8.2	122
35	Mosaicâ€Structured Cobalt Nickel Thiophosphate Nanosheets Incorporated Nâ€doped Carbon for Efficient and Stable Electrocatalytic Water Splitting. Advanced Functional Materials, 2018, 28, 1805075. 	7.8	57
36	Selective hydrogenation of phenol to cyclohexanone by SiO2-supported rhodium nanoparticles under mild conditions. Journal of Catalysis, 2018, 364, 354-365.	3.1	57

LIXIANG ZHONG

#	Article	IF	CITATIONS
37	Origin of storage capacity enhancement by replacing univalent ion with multivalent ion for energy storage. Electrochimica Acta, 2018, 282, 30-37.	2.6	11
38	Unraveling the Influence of Metal Substrates on Graphene Nucleation from First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 23239-23245.	1.5	20
39	Synthesis of the High Performance YAC:Ce Phosphor by a Sol-Gel Method. ECS Journal of Solid State Science and Technology, 2012, 1, R119-R122.	0.9	13