Iolanda De Marco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6690533/publications.pdf

Version: 2024-02-01

94 papers

5,256 citations

71102 41 h-index 70 g-index

102 all docs

102 docs citations

102 times ranked

4501 citing authors

#	Article	IF	CITATIONS
1	Photocatalytic degradation of atrazine under visible light using Gd-doped ZnO prepared by supercritical antisolvent precipitation route. Catalysis Today, 2022, 397-399, 240-248.	4.4	16
2	Zein electrospun fibers purification and vanillin impregnation in a one-step supercritical process to produce safe active packaging. Food Hydrocolloids, 2022, 122, 107082.	10.7	24
3	Supercritical CO2 impregnation of caffeine in biopolymer films to produce anti-cellulite devices. Journal of Supercritical Fluids, 2022, 179, 105411.	3. 2	15
4	The supercritical antisolvent precipitation from a sustainable perspective: A Life Cycle Assessment. Journal of CO2 Utilization, 2022, 55, 101808.	6.8	5
5	Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues. Journal of Materials Science and Technology, 2022, 112, 49-58.	10.7	14
6	Investigating the effects of supercritical antisolvent process and food models on antioxidant capacity, bioaccessibility and transepithelial transport of quercetin and rutin. Food and Function, 2022, 13, 4469-4477.	4.6	7
7	Production of carrier/antioxidant particles by Supercritical Assisted Atomization as an adjuvant treatment of the CoVID-19 pathology. Journal of Supercritical Fluids, 2022, 186, 105604.	3. 2	5
8	High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. Applied Sciences (Switzerland), 2022, 12, 3642.	2.5	12
9	Zein Microparticles and Nanoparticles as Drug Delivery Systems. Polymers, 2022, 14, 2172.	4.5	21
10	Preparation of non-steroidal anti-inflammatory drug/ \hat{l}^2 -cyclodextrin inclusion complexes by supercritical antisolvent process. Journal of CO2 Utilization, 2021, 44, 101397.	6.8	37
11	Formation of Rutin‰β-Cyclodextrin Inclusion Complexes by Supercritical Antisolvent Precipitation. Polymers, 2021, 13, 246.	4.5	19
12	Nanoparticles and Nanocrystals by Supercritical CO2-Assisted Techniques for Pharmaceutical Applications: A Review. Applied Sciences (Switzerland), 2021, 11, 1476.	2.5	36
13	Contact Lenses as Ophthalmic Drug Delivery Systems: A Review. Polymers, 2021, 13, 1102.	4.5	49
14	Aerogels in drug delivery: From design to application. Journal of Controlled Release, 2021, 332, 40-63.	9.9	123
15	Supercritical Carbon Dioxide-Based Processes in Photocatalytic Applications. Molecules, 2021, 26, 2640.	3 . 8	5
16	Polycaprolactone/polyethylene-glycol capsules made by injection molding: A drug release modeling. Materials Science and Engineering C, 2021, 123, 112036.	7.3	5
17	Controlled-release antihistamines using supercritical antisolvent process. Journal of Supercritical Fluids, 2021, 171, 105201.	3. 2	12
18	Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules, 2021, 26, 4440.	3.8	41

#	Article	IF	CITATIONS
19	Effect of the Carrier on the Coprecipitation of Curcumin through Supercritical-Assisted Atomization. ChemEngineering, 2021, 5, 59.	2.4	8
20	Environmental and Sustainability Analysis of a Supercritical Carbon Dioxide-Assisted Process for Pharmaceutical Applications. Processes, 2021, 9, 1788.	2.8	1
21	Optimization of PCL Polymeric Films as Potential Matrices for the Loading of Alpha-Tocopherol by a Combination of Innovative Green Processes. Processes, 2021, 9, 2244.	2.8	4
22	Supercritical CO2 adsorption of non-steroidal anti-inflammatory drugs into biopolymer aerogels. Journal of CO2 Utilization, 2020, 36, 40-53.	6.8	44
23	Supercritical impregnation of mesoglycan into calcium alginate aerogel for wound healing. Journal of Supercritical Fluids, 2020, 157, 104711.	3.2	40
24	Supercritical Antisolvent Process for Pharmaceutical Applications: A Review. Processes, 2020, 8, 938.	2.8	62
25	The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers, 2020, 12, 1114.	4.5	163
26	Photocatalytic Degradation of Eriochrome Black-T Azo Dye Using Eu-Doped ZnO Prepared by Supercritical Antisolvent Precipitation Route: A Preliminary Investigation. Topics in Catalysis, 2020, 63, 1193-1205.	2.8	41
27	Cellulose Acetate and Supercritical Carbon Dioxide: Membranes, Nanoparticles, Microparticles and Nanostructured Filaments. Polymers, 2020, 12, 162.	4.5	9
28	Supercritical antisolvent coprecipitation in the pharmaceutical field: Different polymeric carriers for different drug releases. Canadian Journal of Chemical Engineering, 2020, 98, 1935-1943.	1.7	5
29	Eudragit: A Novel Carrier for Controlled Drug Delivery in Supercritical Antisolvent Coprecipitation. Polymers, 2020, 12, 234.	4.5	38
30	Oral Fast and Topical Controlled Ketoprofen Release Through Supercritical Fluids Based Processes. Lecture Notes in Bioengineering, 2020, , 164-177.	0.4	0
31	A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 2019, 272, 494-506.	8.2	314
32	Annexin A1 Contained in Extracellular Vesicles Promotes the Activation of Keratinocytes by Mesoglycan Effects: An Autocrine Loop Through FPRs. Cells, 2019, 8, 753.	4.1	32
33	Supercritical CO2 impregnation of α-tocopherol into PET/PP films for active packaging applications. Journal of CO2 Utilization, 2019, 34, 266-273.	6.8	39
34	Zinc Oxide Nanoparticles Obtained by Supercritical Antisolvent Precipitation for the Photocatalytic Degradation of Crystal Violet Dye. Catalysts, 2019, 9, 346.	3.5	68
35	Experimental Study of Water Jet Break-Up in and Supercritical Carbon Dioxide. Industrial & Samp; Engineering Chemistry Research, 2019, 58, 22389-22398.	3.7	3
36	PVP/flavonoid coprecipitation by supercritical antisolvent process. Chemical Engineering and Processing: Process Intensification, 2019, 146, 107689.	3.6	42

#	Article	IF	Citations
37	PCL/Mesoglycan Devices Obtained by Supercritical Foaming and Impregnation. Pharmaceutics, 2019, 11, 631.	4.5	20
38	Production of zein/antibiotic microparticles by supercritical antisolvent coprecipitation. Journal of Supercritical Fluids, 2019, 145, 31-38.	3.2	19
39	Polycaprolactone/nimesulide patches obtained by a one-step supercritical foaming + impregnation process. Journal of Supercritical Fluids, 2019, 146, 47-54.	3.2	32
40	Life cycle assessment of supercritical impregnation: Starch aerogel + α-tocopherol tablets. Journal of Supercritical Fluids, 2019, 143, 305-312.	3.2	30
41	PVP microparticles precipitation from acetone-ethanol mixtures using SAS process: Effect of phase behavior. Journal of Supercritical Fluids, 2019, 143, 321-329.	3.2	22
42	Uncertainty of input parameters and sensitivity analysis in life cycle assessment: An Italian processed tomato product. Journal of Cleaner Production, 2018, 177, 315-325.	9.3	31
43	Supercritical antisolvent coprecipitation mechanisms. Journal of Supercritical Fluids, 2018, 138, 247-258.	3.2	67
44	Life cycle assessment of supercritical CO2 extraction of caffeine from coffee beans. Journal of Supercritical Fluids, 2018, 133, 393-400.	3.2	61
45	Supercritical Antisolvent Process: PVP/Nimesulide Coprecipitates. Lecture Notes in Bioengineering, 2018, , 37-49.	0.4	1
46	Annexin A1 May Induce Pancreatic Cancer Progression as a Key Player of Extracellular Vesicles Effects as Evidenced in the In Vitro MIA PaCa-2 Model System. International Journal of Molecular Sciences, 2018, 19, 3878.	4.1	52
47	Pt on SAS-CeO2 nanopowder as catalyst for the CO-WGS reaction. International Journal of Hydrogen Energy, 2018, 43, 19965-19975.	7.1	14
48	Supercritical Adsorption of Quercetin on Aerogels for Active Packaging Applications. Industrial & Engineering Chemistry Research, 2018, 57, 15105-15113.	3.7	42
49	PVP/ketoprofen coprecipitation using supercritical antisolvent process. Powder Technology, 2018, 340, 1-7.	4.2	24
50	Zein/diclofenac sodium coprecipitation at micrometric and nanometric range by supercritical antisolvent processing. Journal of CO2 Utilization, 2018, 27, 366-373.	6.8	52
51	Use of sunflower seed fried oil as an ecofriendly plasticizer for starch and application of this thermoplastic starch as a filler for PLA. Industrial Crops and Products, 2018, 122, 545-552.	5. 2	45
52	Starch aerogel loaded with poorly water-soluble vitamins through supercritical CO 2 adsorption. Chemical Engineering Research and Design, 2017, 119, 221-230.	5.6	76
53	Incorporation of liposoluble vitamins within PVP microparticles using supercritical antisolvent precipitation. Journal of CO2 Utilization, 2017, 19, 230-237.	6.8	28
54	Production, packaging and preservation of semi-finished apricots: AÂcomparative Life Cycle Assessment study. Journal of Food Engineering, 2017, 206, 106-117.	5.2	18

#	Article	IF	Citations
55	Optimization of freeze-drying using a Life Cycle Assessment approach: Strawberries' case study. Journal of Cleaner Production, 2017, 168, 1171-1179.	9.3	34
56	Dependence of SAS particle morphologies on the ternary phase equilibria. Journal of Supercritical Fluids, 2017, 130, 273-281.	3.2	35
57	Formation of PVP/nimesulide microspheres by supercritical antisolvent coprecipitation. Journal of Supercritical Fluids, 2016, 118, 19-26.	3.2	52
58	Improving environmental performances in wine production by a life cycle assessment analysis. Journal of Cleaner Production, 2016, 111, 172-180.	9.3	85
59	PVP/corticosteroid microspheres produced by supercritical antisolvent coprecipitation. Chemical Engineering Journal, 2016, 292, 264-275.	12.7	58
60	Polymers' ultrafine particles for drug delivery systems precipitated by supercritical carbon dioxide + organic solvent mixtures. Powder Technology, 2016, 292, 140-148.	4.2	25
61	Production of lysozyme microparticles to be used in functional foods, using an expanded liquid antisolvent process. Journal of Supercritical Fluids, 2016, 107, 106-113.	3.2	25
62	Analysis of Mechanisms for PVP-Active-Agent Formulation as in Supercritical Antisolvent Spray Process., 2016,, 987-1035.		0
63	Coprecipitation of Polyvinylpyrrolidone \hat{l}^2 -Carotene by Supercritical Antisolvent Processing. Industrial & Engineering Chemistry Research, 2015, 54, 11568-11575.	3.7	46
64	Complete glutaraldehyde elimination during chitosan hydrogel drying by SC-CO2 processing. Journal of Supercritical Fluids, 2015, 103, 70-76.	3.2	76
65	Supercritical fluids based techniques to process pharmaceutical products difficult to micronize: Palmitoylethanolamide. Journal of Supercritical Fluids, 2015, 102, 24-31.	3.2	29
66	Control of particle size, at micrometric and nanometric range, using supercritical antisolvent precipitation from solvent mixtures: Application to PVP. Chemical Engineering Journal, 2015, 273, 344-352.	12.7	59
67	Folic acid–PVP nanostructured composite microparticles by supercritical antisolvent precipitation. Chemical Engineering Journal, 2015, 277, 286-294.	12.7	57
68	Chitosan scaffolds formation by a supercritical freeze extraction process. Journal of Supercritical Fluids, 2014, 90, 27-34.	3.2	42
69	Antisolvent micronization of BSA using supercritical mixtures carbon dioxide+organic solvent. Journal of Supercritical Fluids, 2014, 94, 189-197.	3.2	33
70	Use of solvent mixtures in supercritical antisolvent process to modify precipitates morphology: Cellulose acetate microparticles. Journal of Supercritical Fluids, 2013, 83, 153-160.	3.2	36
71	Nimesulide adsorbed on silica aerogel using supercritical carbon dioxide. Chemical Engineering Research and Design, 2012, 90, 1082-1089.	5 . 6	68
72	Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization: The influence of solvents. Chemical Engineering Journal, 2012, 203, 71-80.	12.7	57

#	Article	IF	Citations
73	Supercritical carbon dioxide+ethanol mixtures for the antisolvent micronization of hydrosoluble materials. Chemical Engineering Journal, 2012, 187, 401-409.	12.7	43
74	Numerical analysis of the characteristic times controlling supercritical antisolvent micronization. Chemical Engineering Science, 2012, 71, 39-45.	3.8	41
75	Supercritical Anti-Solvent Micronization: Control of Morphology and Particle Size., 2012, , 16-28.		0
76	Biodegradable synthetic scaffolds for tendon regeneration. Muscles, Ligaments and Tendons Journal, 2012, 2, 181-6.	0.3	26
77	Mechanisms controlling supercritical antisolvent precipitate morphology. Chemical Engineering Journal, 2011, 169, 358-370.	12.7	139
78	Nanostructured cellulose acetate filaments produced by supercritical antisolvent precipitation. Journal of Supercritical Fluids, 2011, 55, 1095-1103.	3.2	19
79	Influence of pressure, temperature and concentration on the mechanisms of particle precipitation in supercritical antisolvent micronization. Journal of Supercritical Fluids, 2011, 58, 295-302.	3.2	7 3
80	Silica aerogel–metal composites produced by supercritical adsorption. Journal of Supercritical Fluids, 2010, 54, 243-249.	3.2	42
81	Organic nanoparticles recovery in supercritical antisolvent precipitation. Journal of Supercritical Fluids, 2010, 55, 300-306.	3.2	43
82	Supercritical antisolvent micronization of cyclodextrins. Powder Technology, 2008, 183, 239-246.	4.2	44
83	Expanded micro-particles by supercritical antisolvent precipitation: Interpretation of results. Journal of Supercritical Fluids, 2008, 44, 98-108.	3.2	56
84	Spherical microparticles production by supercritical antisolvent precipitation: Interpretation of results. Journal of Supercritical Fluids, 2008, 47, 70-84.	3.2	148
85	Nanoparticles production by supercritical antisolvent precipitation: A general interpretation. Journal of Supercritical Fluids, 2007, 43, 126-138.	3.2	190
86	Essential Oils Extraction and Fractionation Using Supercritical Fluids., 2007,, 305-335.		4
87	Supercritical antisolvent precipitation of Cephalosporins. Powder Technology, 2006, 164, 139-146.	4.2	57
88	Supercritical fluid extraction and fractionation of natural matter. Journal of Supercritical Fluids, 2006, 38, 146-166.	3.2	912
89	Pigment Red 60 micronization using supercritical fluids based techniques. Journal of Supercritical Fluids, 2005, 35, 76-82.	3.2	46
90	Supercritical antisolvent micronization of Cefonicid: thermodynamic interpretation of results. Journal of Supercritical Fluids, 2004, 31, 207-215.	3.2	78

#	Article	IF	CITATION
91	Pilot scale micronization of amoxicillin by supercritical antisolvent precipitation. Journal of Supercritical Fluids, 2003, 26, 1-7.	3.2	83
92	Role of Phase Behavior and Atomization in the Supercritical Antisolvent Precipitation. Industrial & Engineering Chemistry Research, 2003, 42, 6406-6414.	3.7	150
93	Tailoring of nano- and micro-particles of some superconductor precursors by supercritical antisolvent precipitation. Journal of Supercritical Fluids, 2002, 23, 81-87.	3.2	59
94	Rifampicin microparticles production by supercritical antisolvent precipitation. International Journal of Pharmaceutics, 2002, 243, 83-91.	5.2	134