Wako Aoki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6690532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>s</mml:mi></mml:math> process: Nuclear physics, stellar models, and observations. Reviews of Modern Physics, 2011, 83, 157-193.	45.6	622
2	Nucleosynthetic signatures of the first stars. Nature, 2005, 434, 871-873.	27.8	481
3	Carbonâ€enhanced Metalâ€poor Stars. I. Chemical Compositions of 26 Stars. Astrophysical Journal, 2007, 655, 492-521.	4.5	374
4	High Dispersion Spectrograph (HDS) for the Subaru Telescope. Publication of the Astronomical Society of Japan, 2002, 54, 855-864.	2.5	325
5	Spectroscopic Studies of Extremely Metalâ€Poor Stars with the Subaru High Dispersion Spectrograph. II. Therâ€Process Elements, Including Thorium. Astrophysical Journal, 2004, 607, 474-498.	4.5	294
6	Spectroscopic Studies of Very Metalâ€poor Stars with the Subaru High Dispersion Spectrograph. III. Light Neutronâ€Capture Elements. Astrophysical Journal, 2005, 632, 611-637.	4.5	159
7	HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. I. ATMOSPHERIC PARAMETERS AND CHEMICAL COMPOSITIONS. Astronomical Journal, 2013, 145, 13.	4.7	145
8	LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS. Astrophysical Journal, 2009, 698, 1803-1812.	4.5	141
9	HE 1327â^'2326, an Unevolved Star with [Fe/H]<â^'5.0. II. New 3Dâ^'1D Corrected Abundances from a Very Large Telescope UVES Spectrum. Astrophysical Journal, 2008, 684, 588-602.	4.5	132
10	Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013). Nature, 2015, 518, 381-384.	27.8	99
11	Chemical Composition of the Carbon-rich, Extremely Metal Poor Star CS 29498â^'043: A New Class of Extremely Metal Poor Stars with Excesses of Magnesium and Silicon. Astrophysical Journal, 2002, 576, L141-L144.	4.5	87
12	Origin of the Excess of High-energy Retrograde Stars in the Galactic Halo. Astrophysical Journal Letters, 2019, 874, L35.	8.3	73
13	Flashâ€Driven Convective Mixing in Lowâ€Mass, Metalâ€deficient Asymptotic Giant Branch Stars: A New Paradigm for Lithium Enrichment and a Possiblesâ€Process. Astrophysical Journal, 2004, 602, 377-387.	4.5	70
14	BD+44°493: A NINTH MAGNITUDE MESSENGER FROM THE EARLY UNIVERSE; CARBON ENHANCED AND BERYLLIUM POOR. Astrophysical Journal, 2009, 698, L37-L41.	4.5	67
15	Stellar Abundances for Galactic Archaeology Database. IV. Compilation of stars in dwarf galaxies. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	66
16	The Stellar Abundances for Galactic Archaeology (SAGA) data base - II. Implications for mixing and nucleosynthesis in extremely metal-poor stars and chemical enrichment of the Galaxy. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	4.4	64
17	The Stellar Abundances for Galactic Archaeology (SAGA) Database – III. Analysis of enrichment histories for elements and two modes of star formation during the early evolution of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1362-1380.	4.4	64
18	CHEMICAL ANALYSIS OF THE NINTH MAGNITUDE CARBON-ENHANCED METAL-POOR STAR BD+44°493. Astrophysical Journal, 2013, 773, 33.	4.5	55

WAKO AOKI

#	Article	IF	CITATIONS
19	Evidence for an Aspherical Population III Supernova Explosion Inferred from the Hyper-metal-poor Star HE 1327–2326 ^{â^—} . Astrophysical Journal, 2019, 876, 97.	4.5	55
20	Subaru/HDS Study of the Extremely Metal-Poor Star CS 29498-043: Abundance Analysis Details and Comparison with Other Carbon-Rich Objects. Publication of the Astronomical Society of Japan, 2002, 54, 933-949.	2.5	54
21	Extremely Metal-poor Stars. IX. CS 22949-037 and the Role of Hypernovae. Astrophysical Journal, 2002, 569, L107-L110.	4.5	51
22	First Determination of the Actinide Thorium Abundance for a Red Giant of the Ursa Minor Dwarf Galaxy. Publication of the Astronomical Society of Japan, 2007, 59, L15-L19.	2.5	50
23	High-resolution spectroscopic studies of ultra metal-poor stars found in the LAMOST survey. Publication of the Astronomical Society of Japan, 2015, 67, .	2.5	47
24	Spectroscopic Studies of Extremely Metalâ€poor Stars with the Subaru Highâ€Dispersion Spectrograph. IV. The αâ€Element–Enhanced Metalâ€poor Star BS 16934â^'002. Astrophysical Journal, 2007, 660, 747-761.	4.5	46
25	The infrared Doppler (IRD) instrument for the Subaru telescope: instrument description and commissioning results. , 2018, , .		44
26	Spectroscopic Studies of Extremely Metalâ€Poor Stars with the Subaru High Dispersion Spectrograph. I. Observational Data. Astrophysical Journal, Supplement Series, 2004, 152, 113-128.	7.7	40
27	Enormous Li Enhancement Preceding Red Giant Phases in Low-mass Stars in the Milky Way Halo ^{â^—} . Astrophysical Journal Letters, 2018, 852, L31.	8.3	34
28	Image Slicer for the Subaru Telescope High Dispersion Spectrograph. Publication of the Astronomical Society of Japan, 2012, 64, .	2.5	33
29	<i>HUBBLE SPACE TELESCOPE</i> NEAR-ULTRAVIOLET SPECTROSCOPY OF BRIGHT CEMP- <i>s</i> STARS. Astrophysical Journal, 2015, 812, 109.	4.5	33
30	Self-lensing Discovery of a 0.2 M _⊙ White Dwarf in an Unusually Wide Orbit around a Sun-like Star ^{â^—} . Astrophysical Journal Letters, 2019, 881, L3.	8.3	33
31	Most lithium-rich low-mass evolved stars revealed as red clump stars by asteroseismology and spectroscopy. Nature Astronomy, 2021, 5, 86-93.	10.1	31
32	Evidence for the accretion origin of halo stars with an extreme r-process enhancement. Nature Astronomy, 2019, 3, 631-635.	10.1	28
33	Four-hundred Very Metal-poor Stars Studied with LAMOST and Subaru. II. Elemental Abundances. Astrophysical Journal, 2022, 931, 147.	4.5	28
34	High-resolution Spectroscopy of Extremely Metal-poor Stars from SDSS/SEGUE. III. Unevolved Stars with [Fe/H] ≲ â~'3.5*. Astronomical Journal, 2017, 154, 52.	4.7	27
35	Discovery of a strongly <i>r</i> -process enhanced extremely metal-poor star LAMOST J110901.22+075441.8. Research in Astronomy and Astrophysics, 2015, 15, 1264-1274.	1.7	22
36	Lithium in CEMP-no stars: A new constraint on the lithium depletion mechanism in the early universe. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	22

WAKO AOKI

#	Article	IF	CITATIONS
37	Elemental abundances of M dwarfs based on high-resolution near-infrared spectra: Verification by binary systems. Publication of the Astronomical Society of Japan, 2020, 72, .	2.5	16
38	Optical High-resolution Spectroscopy of 14 Young α-rich Stars ^{â^—} . Astrophysical Journal, 2018, 860, 49.	4.5	14
39	Star Formation Timescales of the Halo Populations from Asteroseismology and Chemical Abundances*. Astrophysical Journal, 2021, 912, 72.	4.5	14
40	LAMOST J221750.59+210437.2: A new member of carbon-enhanced extremely metal-poor stars with excesses of Mg and Si. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	13
41	High-precision chemical abundances of Galactic building blocks. Astronomy and Astrophysics, 2022, 661, A103.	5.1	13
42	Elemental Abundances of nearby M Dwarfs Based on High-resolution Near-infrared Spectra Obtained by the Subaru/IRD Survey: Proof of Concept. Astronomical Journal, 2022, 163, 72.	4.7	12
43	HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. II. BINARY FRACTION. Astronomical Journal, 2015, 149, 39.	4.7	11
44	Tracing the Origin of Moving Groups. II. Chemical Abundance of Six Stars in the Halo Stream LAMOST-N1. Astrophysical Journal, 2018, 868, 105.	4.5	11
45	Four-hundred Very Metal-poor Stars Studied with LAMOST and Subaru. I. Survey Design, Follow-up Program, and Binary Frequency. Astrophysical Journal, 2022, 931, 146.	4.5	9
46	A super-Earth orbiting near the inner edge of the habitable zone around the M4.5Âdwarf Ross 508. Publication of the Astronomical Society of Japan, 2022, 74, 904-922.	2.5	8
47	Characterization of M dwarfs using optical mid-resolution spectra for exploration of small exoplanets. Publication of the Astronomical Society of Japan, 2021, 73, 154-173.	2.5	6
48	High-resolution spectroscopy of the extremely iron-poor post-AGB star CC Lyr. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	5
49	Progress in nuclear astrophysics of east and southeast Asia. AAPPS Bulletin, 2021, 31, 1.	6.1	5
50	Tracing the Origin of Moving Groups. I. The Î ³ Leo Moving Group with High-resolution Spectra from the Subaru Telescope. Astrophysical Journal, 2018, 863, 4.	4.5	4
51	LAMOST J011939.222â^'012150.45: The most barium-enhanced CEMP-s turnoff star. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	3
52	The effect of our local motion on the Sandage–Loeb test of the cosmic expansion. Publication of the Astronomical Society of Japan, 2020, 72, .	2.5	3
53	Silicon and strontium abundances of very metal-poor stars determined from near-infrared spectra. Publication of the Astronomical Society of Japan, 2022, 74, 273-282.	2.5	3
54	Detailed investigation of two highâ€speed evolved Galactic stars. Astronomische Nachrichten, 2022, 343,	1.2	3

Wako Aoki

#	Article	IF	CITATIONS
55	The 9th Magnitude CEMP star BD+44°493: Origin of its Carbon Excess and Beryllium Abundance. Proceedings of the International Astronomical Union, 2009, 5, 124-125.	0.0	1
56	Concerning the Li-rich status of KIC 9821622: a Kepler field RGB star reported as a Li-rich giant. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3838-3843.	4.4	1
57	A very low upper limit for a Be abundance of a carbon-enhanced metal-poor star. Proceedings of the International Astronomical Union, 2009, 5, 337-338.	0.0	Ο
58	Searching for chemical relics of first stars with LAMOST and Subaru. Proceedings of the International Astronomical Union, 2015, 11, 51-56.	0.0	0
59	Exploring the Early Chemical Evolution of the Milky Way with LAMOST and Subaru. , 2017, , .		Ο
60	Carbon-Enhanced Metal-Poor Stars as a Constraint on the Li-Depletion Mechanism. , 2017, , .		0
61	LAMOST-Subaru exploration of chemical relics of first stars. Proceedings of the International Astronomical Union, 2017, 13, 21-24.	0.0	Ο
62	Observational Constraints on the Astrophysical Site of the r-Process. , 2017, , .		0