Margit Schulze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6690282/publications.pdf Version: 2024-02-01

MADCIT SCHULZE

#	Article	IF	CITATIONS
1	Antimicrobial Activity of Lignin and Lignin-Derived Cellulose and Chitosan Composites Against Selected Pathogenic and Spoilage Microorganisms. Polymers, 2019, 11, 670.	2.0	161
2	Synthesis, optical absorption and fluorescence of new poly(p-phenylene)-related polymers. Macromolecular Rapid Communications, 1996, 17, 239-252.	2.0	140
3	Synthesis and Characterization of Rigid Rod Poly(p-phenylenes). Macromolecules, 1996, 29, 5136-5142.	2.2	132
4	Lignin-Derived Biomaterials for Drug Release and Tissue Engineering. Molecules, 2018, 23, 1885.	1.7	131
5	Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics, 2019, 11, 117.	2.0	112
6	Efficient blue light emitting devices based on rigid-rod polyelectrolytes. Advanced Materials, 1996, 8, 585-588.	11.1	90
7	Rigid-rod polyelectrolytes: synthesis of sulfonated poly(p-phenylene)s. Macromolecular Rapid Communications, 1994, 15, 669-676.	2.0	82
8	Biomaterials and Mesenchymal Stem Cells for Regenerative Medicine. Recent Patents on Biotechnology, 2010, 4, 1-22.	0.4	82
9	Textures of liquid-crystalline phases of substituted poly(p-phenylene)s. Die Makromolekulare Chemie Rapid Communications, 1993, 14, 471-480.	1.1	80
10	Lignocellulosic Biomass as Source for Lignin-Based Environmentally Benign Antioxidants. Molecules, 2018, 23, 2664.	1.7	78
11	Qualitative and Quantitative Analysis of Lignin Produced from Beech Wood by Different Conditions of the Organosolv Process. Journal of Polymers and the Environment, 2016, 24, 85-97.	2.4	53
12	Synthesis and spectroscopic properties of phthalocyanine dimers in solution. Chemical Physics Letters, 1995, 245, 23-29.	1.2	52
13	Rigidâ€rod polyelectrolytes based on poly(pâ€phenylene sulfonic acid). Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 707-714.	0.9	39
14	Unmodified kraft lignin isolated at room temperature from aqueous solution for preparation of highly flexible transparent polyurethane coatings. RSC Advances, 2018, 8, 40765-40777.	1.7	39
15	Polysaccharide-Based Systems for Targeted Stem Cell Differentiation and Bone Regeneration. Biomolecules, 2019, 9, 840.	1.8	39
16	Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate?. International Journal of Molecular Sciences, 2020, 21, 4031.	1.8	38
17	Antimicrobial Activity of Lignin-Derived Polyurethane Coatings Prepared from Unmodified and Demethylated Lignins. Coatings, 2019, 9, 494.	1.2	31
18	Extraction of High-Purity Lignins via Catalyst-free Organosolv Pulping from Low-Input Crops. Biomacromolecules, 2020, 21, 1929-1942.	2.6	30

MARGIT SCHULZE

#	Article	IF	CITATIONS
19	Non-Cytotoxic Agarose/Hydroxyapatite Composite Scaffolds for Drug Release. International Journal of Molecular Sciences, 2019, 20, 3565.	1.8	29
20	Novel method for the determination of average molecular weight of natural polymers based on 2D DOSY NMR and chemometrics: Example of heparin. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 128-132.	1.4	28
21	Synthesis and Properties of Aromatic Main-Chain Polyesters Having Disperse Red 1 Nonlinear Optical Chromophores in the Side Chain. Chemistry of Materials, 1994, 6, 2159-2166.	3.2	27
22	Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing. Journal of Clinical Medicine, 2014, 3, 39-87.	1.0	25
23	Miscanthus x giganteus Stem Versus Leaf-Derived Lignins Differing in Monolignol Ratio and Linkage. International Journal of Molecular Sciences, 2019, 20, 1200.	1.8	25
24	Rigid-Rod-Like Main Chain Polymers with Rigidly Attached Chromophores. A Novel Structural Concept for Electrooptical Materials. 1. Synthesis and Characterization. Macromolecules, 1996, 29, 4686-4696.	2.2	23
25	Comparing chemical composition and lignin structure of <i>Miscanthus x giganteus</i> and <i>Miscanthus nagara</i> harvested in autumn and spring and separated into stems and leaves. RSC Advances, 2020, 10, 10740-10751.	1.7	23
26	Small Molecules Enhance Scaffold-Based Bone Grafts via Purinergic Receptor Signaling in Stem Cells. International Journal of Molecular Sciences, 2018, 19, 3601.	1.8	22
27	Low-Input Crops as Lignocellulosic Feedstock for Second-Generation Biorefineries and the Potential of Chemometrics in Biomass Quality Control. Applied Sciences (Switzerland), 2019, 9, 2252.	1.3	20
28	Rigid Rodlike Main Chain Polymers with Conformationally Restricted Nonlinear Optical Chromophores: Synthesis and Properties. Macromolecules, 1994, 27, 6156-6162.	2.2	17
29	Evaluating Release Kinetics from Alginate Beads Coated with Polyelectrolyte Layers for Sustained Drug Delivery. ACS Applied Bio Materials, 2021, 4, 6719-6731.	2.3	17
30	Therapeutic Treatments for Osteoporosis—Which Combination of Pills Is the Best among the Bad?. International Journal of Molecular Sciences, 2022, 23, 1393.	1.8	16
31	Suzuki oupling of Cp [*] Ru(<i>para</i> ₆ H ₄ Br ₂) with Phenyl Boronic Acid: A Model Reaction for the Synthesis of Organometallic Polymers. Chemische Berichte, 1996, 129, 1323-1325.	0.2	15
32	Electrooptical Properties of Liquidâ€Crystalline Rigid Rodâ€Like Polymers with NLOâ€Active Sidegroups. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1993, 97, 1287-1293.	0.9	14
33	α-Methacryloyl-ï‰-Hydroxyl-Poly(ïµ-Caprolactone) Macromonomer: Synthesis, Characterization, and Copolymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 1998, 35, 207-232.	1.2	14
34	Antioxidant activity of unmodified kraft and organosolv lignins to be used as sustainable components for polyurethane coatings. Journal of Coatings Technology Research, 2019, 16, 1543-1552.	1.2	14
35	Nucleophilic substitution in arylazo phenols—a simple route for preparing chlorosubstituted azobenzenes. Dyes and Pigments, 1991, 15, 255-262	2.0	13
36	Photosensitized cross-linking of Langmuir-Blodgett multilayers based on copoly(glutamate)s. Advanced Materials, 1993, 5, 564-568.	11.1	12

MARGIT SCHULZE

#	Article	IF	CITATIONS
37	Template-Mediated Biomineralization for Bone Tissue Engineering. Current Stem Cell Research and Therapy, 2016, 12, 103-123.	0.6	12
38	Artificial Scaffolds and Mesenchymal Stem Cells for Hard Tissues. Advances in Biochemical Engineering/Biotechnology, 2011, 126, 153-194.	0.6	11
39	Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. International Journal of Molecular Sciences, 2021, 22, 6387.	1.8	11
40	Properties and Design Criteria of Secondâ€order Nonlinear Optical Materials Based on Side Chain Polyesters with an Aromatic Main Chain. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1993, 97, 1272-1280.	0.9	10
41	Molecular Composites Based on Rigid Rod Polymers for Electrooptical Applications. Materials Research Society Symposia Proceedings, 1993, 328, 15.	0.1	9
42	Benchtop versus high field NMR: Comparable performance found for the molecular weight determination of lignin. Journal of Pharmaceutical and Biomedical Analysis, 2022, 212, 114649.	1.4	9
43	Qualitative and Quantitative Analysis of Lignins from Different Sources and Isolation Methods for an Application as a Biobased Chemical Resource and Polymeric Material. , 2016, , 15-44.		8
44	Development and Evaluation of a Prototype Scratch Apparatus for Wound Assays Adjustable to Different Forces and Substrates. Applied Sciences (Switzerland), 2019, 9, 4414.	1.3	8
45	Is the Calibration Transfer of Multivariate Calibration Models between High- and Low-Field NMR Instruments Possible? A Case Study of Lignin Molecular Weight. Analytical Chemistry, 2022, 94, 3997-4004.	3.2	8
46	Is NMR Combined with Multivariate Regression Applicable for the Molecular Weight Determination of Randomly Cross-Linked Polymers Such as Lignin?. ACS Omega, 2021, 6, 29516-29524.	1.6	7
47	Materials Engineering For Polarized Light Emitting Diodes. Materials Research Society Symposia Proceedings, 1995, 413, 23.	0.1	6
48	Supramolecular architectures of cellulose derivatives. Macromolecular Symposia, 1997, 120, 237-245.	0.4	6
49	Nanomedicine-based strategies to improve treatment of cutaneous leishmaniasis. Royal Society Open Science, 2022, 9, .	1.1	6
50	Rigid rod polymers with regularly spaced silicon-centered phthalocyanine units in the backbone. Macromolecular Rapid Communications, 1995, 16, 239-245.	2.0	5
51	The effect of nanostructured surfaces on stem cell fate. , 2017, , 567-589.		5
52	Mesenchymal Stem Cells. Learning Materials in Biosciences, 2020, , 21-39.	0.2	4
53	PREPARATION AND CHARACTERIZATION OF 1-ARYLAZO-SUBSTITUTED NAPHTHYLSULFIDES. Phosphorus, Sulfur and Silicon and the Related Elements, 1991, 61, 161-171.	0.8	3

54 Types of lignin, properties, and structural characterization techniques. , 2021, , 105-158.

3

MARGIT SCHULZE

#	Article	IF	CITATIONS
55	Can Sustainable Packaging Help to Reduce Food Waste? A Status Quo Focusing Plant-Derived Polymers and Additives. Applied Sciences (Switzerland), 2021, 11, 5307.	1.3	3
56	Investigation of Temperature Dependency of Morphological Properties of Thermoplastic Polyurethane using WAXS and SAXS Monitoring. Journal of Chemistry and Chemical Engineering, 2015, 9, .	0.3	3
57	Recent Patents on Biomedical Applications for the Treatment of Atherosclerosis. Recent Patents on Regenerative Medicine, 2012, 2, 75-102.	0.4	3
58	Composite nanoparticles derived by self-assembling of hydrophobic polysaccharide derivatives and lignin. Cellulose, 2022, 29, 3613-3620.	2.4	3
59	Nucleophilic substitution on arylazo compounds: part IV. reactions of chloro-substituted arylazonaphthalenes with primary and secondary amines11Parts I, II, and III: see Refs 1, 2 and 3, respectively Dyes and Pigments, 1991, 16, 119-136.	2.0	2
60	Lignins Isolated via Catalyst-Free Organosolv Pulping from Miscanthus x giganteus, M. sinensis, M. robustus and M. nagara: A Comparative Study. Molecules, 2021, 26, 842.	1.7	2
61	Oxadiazolyl-Pyridinium as Cationic Scaffold for Fluorinated Ionic Liquid Crystals. Applied Sciences (Switzerland), 2021, 11, 10347.	1.3	2
62	Nachhaltigkeit in der Hochschullehre – ein interdisziplinÃ ¤ er Ansatz. , 2018, , 265-281.		1
63	Recent Patents on Biomedical Applications for the Treatment of Atherosclerosis. Recent Patents on Regenerative Medicine, 2012, 2, 75-102.	0.4	1
64	Nachhaltigkeit in der chemischen Bildung an Hochschulen - Bewertungskompetenz und VerantwortungsfÄ ¤ igkeit als naturwissenschaftliches Bildungsziel. , 2012, , 371-393.		1
65	Lignin-based composites for packaging applications. , 2022, , 131-171.		1
66	Thermochemical conversion of cabbage waste to bioenergy and bioâ€chemicals production. International Journal of Energy Research, 2022, 46, 20206-20215.	2.2	1
67	Preparation and Spectral Characterization of Sulphur-Containing Diarylazo Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 531-533.	0.8	0
			_

68 Frontiers in Stem Cell and Regenerative Medicine Research. , 2017, , .

0