Mariya V Khodakovskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/668987/publications.pdf

Version: 2024-02-01

47 papers 4,606 citations

236925 25 h-index 315739 38 g-index

48 all docs

48 docs citations

48 times ranked

4305 citing authors

#	Article	IF	CITATIONS
1	Whole-Transcriptome Responses to Environmental Stresses in Agricultural Crops Treated with Carbon-Based Nanomaterials. ACS Applied Bio Materials, 2021, 4, 4292-4301.	4.6	8
2	Enhancement of drought tolerance in rice by silencing of the OsSYT-5 gene. PLoS ONE, 2021, 16, e0258171.	2.5	0
3	Enhancement of drought tolerance in rice by silencing of the OsSYT-5 gene. PLoS ONE, 2021, 16, e0258171.	2.5	8
4	Modification of soybean growth and abiotic stress tolerance by expression of truncated ERECTA protein from Arabidopsis thaliana. PLoS ONE, 2020, 15, e0233383.	2.5	10
5	The impact of tomato fruits containing multi-walled carbon nanotube residues on human intestinal epithelial cell barrier function and intestinal microbiome composition. Nanoscale, 2019, 11, 3639-3655.	5.6	20
6	Carbon-based nanomaterials as stimulators of production of pharmaceutically active alkaloids in cell culture of <i>Catharanthus roseus </i> Nanotechnology, 2019, 30, 275102.	2.6	18
7	Improvement of Commercially Valuable Traits of Industrial Crops by Application of Carbon-based Nanomaterials. Scientific Reports, 2019, 9, 19358.	3.3	46
8	Assessment of Effects of the Long-Term Exposure of Agricultural Crops to Carbon Nanotubes. Journal of Agricultural and Food Chemistry, 2018, 66, 6654-6662.	5.2	55
9	Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS ONE, 2018, 13, e0202274.	2.5	106
10	Graphene and carbon nanotubes activate different cell surface receptors on macrophages before and after deactivation of endotoxins. Journal of Applied Toxicology, 2017, 37, 1305-1316.	2.8	26
11	Carbon nanotubes as carriers of Panax ginseng metabolites and enhancers of ginsenosides Rb1 and Rg1 anti-cancer activity. Nanotechnology, 2017, 28, 015101.	2.6	27
12	Multiwalled Carbon Nanotubes Dramatically Affect the Fruit Metabolome of Exposed Tomato Plants. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32430-32435.	8.0	61
13	Polyphenolic extract of InsP 5-ptase expressing tomato plants reduce the proliferation of MCF-7 breast cancer cells. PLoS ONE, 2017, 12, e0175778.	2.5	6
14	Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology, 2016, 27, 265102.	2.6	80
15	Future Roadmap for Plant Nanotechnology. , 2016, , 367-371.		2
16	Role of Nanoparticles for Delivery of Genetic Material., 2016,, 257-261.		2
17	Concerns About Nanoparticle Hazard to Human Health and Environment., 2016,, 349-365.		1
18	Genetic reduction of inositol triphosphate (InsP3) increases tolerance of tomato plants to oxidative stress. Planta, 2015, 242, 123-135.	3.2	6

#	Article	lF	CITATIONS
19	Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon, 2015, 81, 607-619.	10.3	196
20	Plasmonically active nanorods for delivery of bio-active agents and high-sensitivity SERS detection in planta. RSC Advances, 2014, 4, 64985-64993.	3.6	42
21	Impact of Carbon Nanotube Exposure to Seeds of Valuable Crops. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7965-7973.	8.0	336
22	Carbon Nanotubes as Plant Growth Regulators: Effects on Tomato Growth, Reproductive System, and Soil Microbial Community. Small, 2013, 9, 115-123.	10.0	444
23	Role of carbonaceous nanomaterials in stimulating osteogenesis in mammalian bone cells. Journal of Materials Chemistry B, 2013, 1, 3220.	5. 8	23
24	Modification of tomato growth by expression of truncated ERECTA protein from Arabidopsis thaliana. Journal of Experimental Botany, 2012, 63, 6493-6504.	4.8	60
25	Reduction of inositol (1,4,5)–trisphosphate affects the overall phosphoinositol pathway and leads to modifications in light signalling and secondary metabolism in tomato plants. Journal of Experimental Botany, 2012, 63, 825-835.	4.8	16
26	Carbon Nanotubes Induce Growth Enhancement of Tobacco Cells. ACS Nano, 2012, 6, 2128-2135.	14.6	598
27	Surface Chemistry of Carbon Nanotubes Impacts the Growth and Expression of Water Channel Protein in Tomato Plants. Small, 2012, 8, 2328-2334.	10.0	201
28	Bioresponse to Nanotubes: Surface Chemistry of Carbon Nanotubes Impacts the Growth and Expression of Water Channel Protein in Tomato Plants (Small 15/2012). Small, 2012, 8, 2327-2327.	10.0	4
29	Raman spectroscopy as a detection and analysis tool for ⟨i⟩in vitro⟨ i⟩ specific targeting of pancreatic cancer cells by EGFâ€conjugated, singleâ€walled carbon nanotubes. Journal of Applied Toxicology, 2012, 32, 365-375.	2.8	31
30	Site-specific methylation in gene coding region underlies transcriptional silencing of the Phytochrome A epiallele in Arabidopsis thaliana. Plant Molecular Biology, 2012, 79, 191-202.	3.9	10
31	Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its <i>in vivo</i> multimodal detection. Nanotechnology, 2011, 22, 295101.	2.6	62
32	Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1028-1033.	7.1	458
33	Nanostructural materials increase mineralization in bone cells and affect gene expression through miRNA regulation. Journal of Cellular and Molecular Medicine, 2011, 15, 2297-2306.	3 . 6	58
34	In vivo plant flow cytometry: A first proofâ€ofâ€concept. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 855-865.	1.5	28
35	Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response. Journal of Experimental Botany, 2011, 62, 2679-2689.	4.8	82
36	Increasing inositol (1,4,5)â€trisphosphate metabolism affects drought tolerance, carbohydrate metabolism and phosphateâ€sensitive biomass increases in tomato. Plant Biotechnology Journal, 2010, 8, 170-183.	8.3	49

#	Article	IF	CITATIONS
37	Enhancement of flowering and branching phenotype in chrysanthemum by expression of ipt under the control of a 0.821Âkb fragment of the LEACO1 gene promoter. Plant Cell Reports, 2009, 28, 1351-1362.	5.6	31
38	Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano, 2009, 3, 3221-3227.	14.6	837
39	Enhanced cold tolerance in transgenic tobacco expressing a chloroplast ï‰-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta, 2006, 223, 1090-1100.	3.2	91
40	Expression of ipt gene controlled by an ethylene and auxin responsive fragment of the LEACO1 promoter increases flower number in transgenic Nicotiana tabacum. Plant Cell Reports, 2006, 25, 1181-1192.	5. 6	14
41	Effects of cor15a-IPT gene expression on leaf senescence in transgenic Petuniaxhybrida and Dendranthemaxgrandiflorum. Journal of Experimental Botany, 2005, 56, 1165-1175.	4.8	37
42	Arabidopsis H+-PPase AVP1 Regulates Auxin-Mediated Organ Development. Science, 2005, 310, 121-125.	12.6	403
43	(289) GUS Expression in LEACO10.92kb-GUS Tobacco Plants Suggests That Auxin and Ethylene Are Involved in LEACO10.92kb Promoter Induction. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1081A-1081.	1.0	0
44	(290) Increased Tolerance to Dark, Cold Storage in Double Transgenic Plants Expressing FAD7 and IPT Genes under the Control of a Cold-inducible Promoter. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1081B-1081.	1.0	0
45	Ethylene-inducible Expression of ipt Gene Produces a Dramatic Increase in Fower Bud Count in Transgenic Plants. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 8218-821.	1.0	O
46	Wound-inducible Expression of the ipt Gene Stimulates Enhanced Lateral Shoot Development in Tobacco. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 821D-821.	1.0	0
47	Increased Tolerance to Cold Storage in Transgenic Petunia Plants expressing the FAD7 Gene. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 821C-821.	1.0	0