## Mariya V Khodakovskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/668987/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano, 2009, 3, 3221-3227.                                                                                    | 14.6 | 837       |
| 2  | Carbon Nanotubes Induce Growth Enhancement of Tobacco Cells. ACS Nano, 2012, 6, 2128-2135.                                                                                                                                         | 14.6 | 598       |
| 3  | Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1028-1033.                            | 7.1  | 458       |
| 4  | Carbon Nanotubes as Plant Growth Regulators: Effects on Tomato Growth, Reproductive System, and<br>Soil Microbial Community. Small, 2013, 9, 115-123.                                                                              | 10.0 | 444       |
| 5  | Arabidopsis H+-PPase AVP1 Regulates Auxin-Mediated Organ Development. Science, 2005, 310, 121-125.                                                                                                                                 | 12.6 | 403       |
| 6  | Impact of Carbon Nanotube Exposure to Seeds of Valuable Crops. ACS Applied Materials &<br>Interfaces, 2013, 5, 7965-7973.                                                                                                          | 8.0  | 336       |
| 7  | Surface Chemistry of Carbon Nanotubes Impacts the Growth and Expression of Water Channel<br>Protein in Tomato Plants. Small, 2012, 8, 2328-2334.                                                                                   | 10.0 | 201       |
| 8  | Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon, 2015, 81, 607-619.                                                                                                                             | 10.3 | 196       |
| 9  | Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS ONE, 2018, 13, e0202274.                                                                         | 2.5  | 106       |
| 10 | Enhanced cold tolerance in transgenic tobacco expressing a chloroplast ω-3 fatty acid desaturase gene<br>under the control of a cold-inducible promoter. Planta, 2006, 223, 1090-1100.                                             | 3.2  | 91        |
| 11 | Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response. Journal of Experimental Botany, 2011, 62, 2679-2689.                                                           | 4.8  | 82        |
| 12 | Comparative study of plant responses to carbon-based nanomaterials with different morphologies.<br>Nanotechnology, 2016, 27, 265102.                                                                                               | 2.6  | 80        |
| 13 | Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its <i>in vivo</i> multimodal detection. Nanotechnology, 2011, 22, 295101. | 2.6  | 62        |
| 14 | Multiwalled Carbon Nanotubes Dramatically Affect the Fruit Metabolome of Exposed Tomato Plants.<br>ACS Applied Materials & Interfaces, 2017, 9, 32430-32435.                                                                       | 8.0  | 61        |
| 15 | Modification of tomato growth by expression of truncated ERECTA protein from Arabidopsis thaliana.<br>Journal of Experimental Botany, 2012, 63, 6493-6504.                                                                         | 4.8  | 60        |
| 16 | Nanostructural materials increase mineralization in bone cells and affect gene expression through miRNA regulation. Journal of Cellular and Molecular Medicine, 2011, 15, 2297-2306.                                               | 3.6  | 58        |
| 17 | Assessment of Effects of the Long-Term Exposure of Agricultural Crops to Carbon Nanotubes. Journal of Agricultural and Food Chemistry, 2018, 66, 6654-6662.                                                                        | 5.2  | 55        |
| 18 | Increasing inositol (1,4,5)â€ŧrisphosphate metabolism affects drought tolerance, carbohydrate<br>metabolism and phosphateâ€sensitive biomass increases in tomato. Plant Biotechnology Journal, 2010, 8,<br>170-183.                | 8.3  | 49        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Improvement of Commercially Valuable Traits of Industrial Crops by Application of Carbon-based<br>Nanomaterials. Scientific Reports, 2019, 9, 19358.                                                                                       | 3.3 | 46        |
| 20 | Plasmonically active nanorods for delivery of bio-active agents and high-sensitivity SERS detection in planta. RSC Advances, 2014, 4, 64985-64993.                                                                                         | 3.6 | 42        |
| 21 | Effects of cor15a-IPT gene expression on leaf senescence in transgenic Petuniaxhybrida and<br>Dendranthemaxgrandiflorum. Journal of Experimental Botany, 2005, 56, 1165-1175.                                                              | 4.8 | 37        |
| 22 | Enhancement of flowering and branching phenotype in chrysanthemum by expression of ipt under the control of a 0.821Åkb fragment of the LEACO1 gene promoter. Plant Cell Reports, 2009, 28, 1351-1362.                                      | 5.6 | 31        |
| 23 | Raman spectroscopy as a detection and analysis tool for <i>in vitro</i> specific targeting of<br>pancreatic cancer cells by EGFâ€conjugated, singleâ€walled carbon nanotubes. Journal of Applied<br>Toxicology, 2012, 32, 365-375.         | 2.8 | 31        |
| 24 | In vivo plant flow cytometry: A first proofâ€ofâ€concept. Cytometry Part A: the Journal of the<br>International Society for Analytical Cytology, 2011, 79A, 855-865.                                                                       | 1.5 | 28        |
| 25 | Carbon nanotubes as carriers of Panax ginseng metabolites and enhancers of ginsenosides Rb1 and Rg1 anti-cancer activity. Nanotechnology, 2017, 28, 015101.                                                                                | 2.6 | 27        |
| 26 | Graphene and carbon nanotubes activate different cell surface receptors on macrophages before and after deactivation of endotoxins. Journal of Applied Toxicology, 2017, 37, 1305-1316.                                                    | 2.8 | 26        |
| 27 | Role of carbonaceous nanomaterials in stimulating osteogenesis in mammalian bone cells. Journal of<br>Materials Chemistry B, 2013, 1, 3220.                                                                                                | 5.8 | 23        |
| 28 | The impact of tomato fruits containing multi-walled carbon nanotube residues on human intestinal epithelial cell barrier function and intestinal microbiome composition. Nanoscale, 2019, 11, 3639-3655.                                   | 5.6 | 20        |
| 29 | Carbon-based nanomaterials as stimulators of production of pharmaceutically active alkaloids in cell culture of <i>Catharanthus roseus</i> . Nanotechnology, 2019, 30, 275102.                                                             | 2.6 | 18        |
| 30 | Reduction of inositol (1,4,5)–trisphosphate affects the overall phosphoinositol pathway and leads to<br>modifications in light signalling and secondary metabolism in tomato plants. Journal of Experimental<br>Botany, 2012, 63, 825-835. | 4.8 | 16        |
| 31 | Expression of ipt gene controlled by an ethylene and auxin responsive fragment of the LEACO1 promoter increases flower number in transgenic Nicotiana tabacum. Plant Cell Reports, 2006, 25, 1181-1192.                                    | 5.6 | 14        |
| 32 | Site-specific methylation in gene coding region underlies transcriptional silencing of the<br>Phytochrome A epiallele in Arabidopsis thaliana. Plant Molecular Biology, 2012, 79, 191-202.                                                 | 3.9 | 10        |
| 33 | Modification of soybean growth and abiotic stress tolerance by expression of truncated ERECTA protein from Arabidopsis thaliana. PLoS ONE, 2020, 15, e0233383.                                                                             | 2.5 | 10        |
| 34 | Whole-Transcriptome Responses to Environmental Stresses in Agricultural Crops Treated with Carbon-Based Nanomaterials. ACS Applied Bio Materials, 2021, 4, 4292-4301.                                                                      | 4.6 | 8         |
| 35 | Enhancement of drought tolerance in rice by silencing of the OsSYT-5 gene. PLoS ONE, 2021, 16, e0258171.                                                                                                                                   | 2.5 | 8         |
| 36 | Genetic reduction of inositol triphosphate (InsP3) increases tolerance of tomato plants to oxidative stress. Planta, 2015, 242, 123-135.                                                                                                   | 3.2 | 6         |

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Polyphenolic extract of InsP 5-ptase expressing tomato plants reduce the proliferation of MCF-7 breast cancer cells. PLoS ONE, 2017, 12, e0175778.                                                                                                                 | 2.5  | 6         |
| 38 | Bioresponse to Nanotubes: Surface Chemistry of Carbon Nanotubes Impacts the Growth and<br>Expression of Water Channel Protein in Tomato Plants (Small 15/2012). Small, 2012, 8, 2327-2327.                                                                         | 10.0 | 4         |
| 39 | Future Roadmap for Plant Nanotechnology. , 2016, , 367-371.                                                                                                                                                                                                        |      | 2         |
| 40 | Role of Nanoparticles for Delivery of Genetic Material. , 2016, , 257-261.                                                                                                                                                                                         |      | 2         |
| 41 | Concerns About Nanoparticle Hazard to Human Health and Environment. , 2016, , 349-365.                                                                                                                                                                             |      | 1         |
| 42 | Ethylene-inducible Expression of ipt Gene Produces a Dramatic Increase in Fower Bud Count in<br>Transgenic Plants. Hortscience: A Publication of the American Society for Hortcultural Science, 2004,<br>39, 821B-821.                                             | 1.0  | 0         |
| 43 | Wound-inducible Expression of the ipt Gene Stimulates Enhanced Lateral Shoot Development in Tobacco. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 821D-821.                                                              | 1.0  | 0         |
| 44 | Increased Tolerance to Cold Storage in Transgenic Petunia Plants expressing the FAD7 Gene.<br>Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 821C-821.                                                                     | 1.0  | 0         |
| 45 | (289) GUS Expression in LEACO10.92kb-GUS Tobacco Plants Suggests That Auxin and Ethylene Are<br>Involved in LEACO10.92kb Promoter Induction. Hortscience: A Publication of the American Society for<br>Hortcultural Science, 2005, 40, 1081A-1081.                 | 1.0  | 0         |
| 46 | (290) Increased Tolerance to Dark, Cold Storage in Double Transgenic Plants Expressing FAD7 and IPT<br>Genes under the Control of a Cold-inducible Promoter. Hortscience: A Publication of the American<br>Society for Hortcultural Science, 2005, 40, 1081B-1081. | 1.0  | 0         |
| 47 | Enhancement of drought tolerance in rice by silencing of the OsSYT-5 gene. PLoS ONE, 2021, 16,                                                                                                                                                                     | 2.5  | 0         |