Hasliza Bahruji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6689670/publications.pdf Version: 2024-02-01

HASUZA RAHDIII

#	Article	IF	CITATIONS
1	Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 2016, 343, 133-146.	6.2	359
2	New insights into the mechanism of photocatalytic reforming on Pd/TiO2. Applied Catalysis B: Environmental, 2011, 107, 205-209.	20.2	140
3	Sustainable H2 gas production by photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 115-118.	3.9	117
4	Hydrogen production by photoreforming of biofuels using Au, Pd and Au–Pd/TiO2 photocatalysts. Journal of Catalysis, 2014, 310, 10-15.	6.2	112
5	PdZn catalysts for CO ₂ hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discussions, 2017, 197, 309-324.	3.2	81
6	Facile synthesis of ZIF-8 nanoparticles using polar acetic acid solvent for enhanced adsorption of methylene blue. Microporous and Mesoporous Materials, 2021, 310, 110620.	4.4	69
7	Hydrogenation of CO ₂ to Dimethyl Ether over BrÃ,nsted Acidic PdZn Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 6821-6829.	3.7	59
8	Photoactivated reaction of water with silicon nanoparticles. International Journal of Hydrogen Energy, 2009, 34, 8504-8510.	7.1	54
9	Microwave synthesis of ZnIn ₂ S ₄ /WS ₂ composites for photocatalytic hydrogen production and hexavalent chromium reduction. Catalysis Science and Technology, 2019, 9, 5698-5711.	4.1	52
10	The adsorption and reaction of alcohols on TiO2 and Pd/TiO2 catalysts. Applied Catalysis A: General, 2013, 454, 66-73.	4.3	48
11	The importance of metal reducibility for the photo-reforming of methanol on transition metal-TiO2 photocatalysts and the use of non-precious metals. International Journal of Hydrogen Energy, 2015, 40, 1465-1471.	7.1	47
12	Enhanced visible-light-driven photocatalytic H ₂ production and Cr(<scp>vi</scp>) reduction of a Znln ₂ S ₄ /MoS ₂ heterojunction synthesized by the biomolecule-assisted microwave heating method. Catalysis Science and Technology, 2020, 10, 2838-2854.	4.1	46
13	The Photocatalytic Window: Photo-Reforming of Organics and Water Splitting for Sustainable Hydrogen Production. Catalysis Letters, 2015, 145, 214-219.	2.6	42
14	Hydrogen generation by photocatalytic reforming of potential biofuels: Polyols, cyclic alcohols, and saccharides. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 451-456.	3.9	39
15	Solvent Free Synthesis of PdZn/TiO2 Catalysts for the Hydrogenation of CO2 to Methanol. Topics in Catalysis, 2018, 61, 144-153.	2.8	39
16	Direct synthesis of mesoporous aluminosilicates from Indonesian kaolin clay without calcination. Applied Clay Science, 2015, 118, 290-294.	5.2	38
17	Photodegradation of organic pollutants in water and green hydrogen production via methanol photoreforming of doped titanium oxide nanoparticles. Science of the Total Environment, 2016, 563-564, 921-932.	8.0	35
18	Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and photocatalysis. Applied Catalysis A: General, 2015, 504, 62-73.	4.3	29

Hasliza Bahruji

#	Article	IF	CITATIONS
19	Size tunable mesoporous carbon microspheres using Pluronic F127 and gelatin as co-template for removal of ibuprofen. Science of the Total Environment, 2020, 711, 135066.	8.0	28
20	Converting red mud wastes into mesoporous ZSM-5 decorated with TiO2 as an eco-friendly and efficient adsorbent-photocatalyst for dyes removal. Arabian Journal of Chemistry, 2022, 15, 103754.	4.9	28
21	Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel. Journal of the Energy Institute, 2020, 93, 2238-2246.	5.3	27
22	The potential of Reutealis trisperma seed as a new non-edible source for biodiesel production. Biomass Conversion and Biorefinery, 2015, 5, 347-353.	4.6	26
23	Utilization of red mud waste into mesoporous ZSM-5 for methylene blue adsorption-desorption studies. Environmental Science and Pollution Research, 2021, 28, 37354-37370.	5.3	23
24	Rutile TiO2–Pd Photocatalysts for Hydrogen Gas Production from Methanol Reforming. Topics in Catalysis, 2015, 58, 70-76.	2.8	22
25	Pd local structure and size correlations to the activity of Pd/TiO ₂ for photocatalytic reforming of methanol. Physical Chemistry Chemical Physics, 2019, 21, 16154-16160.	2.8	22
26	Uniform rod and spherical nanocrystalline celluloses from hydrolysis of industrial pepper waste (Piper nigrum L.) using organic acid and inorganic acid. International Journal of Biological Macromolecules, 2022, 204, 593-605.	7.5	20
27	Development of CaO From Natural Calcite as a Heterogeneous Base Catalyst in the Formation of Biodiesel: Review. Journal of Renewable Materials, 2019, 7, 915-939.	2.2	18
28	Hydrothermal assisted isolation of microcrystalline cellulose from pepper (Piper nigrum L.) processing waste for making sustainable bio-composite. Journal of Cleaner Production, 2021, 305, 127229.	9.3	18
29	Enhanced CO ₂ methanation at mild temperature on Ni/zeolite from kaolin: effect of metal–support interface. RSC Advances, 2021, 11, 16376-16387.	3.6	18
30	CO ₂ Hydrogenation to CH ₃ OH over PdZn Catalysts, with Reduced CH ₄ Production. ChemCatChem, 2020, 12, 6024-6032.	3.7	16
31	Green Synthesis of Hexagonal Hematite (α-Fe2O3) Flakes Using Pluronic F127-Gelatin Template for Adsorption and Photodegradation of Ibuprofen. Materials, 2021, 14, 6779.	2.9	15
32	Rock rushing derived hydrogen directly supports a methanogenic community: significance for the deep biosphere. Environmental Microbiology Reports, 2019, 11, 165-172.	2.4	13
33	SYNTHESIS OF ZEOLITE NaY FROM DEALUMINATED METAKAOLIN AS NI SUPPORT FOR CO2 HYDROGENATION TO METHANE. Clays and Clay Minerals, 2020, 68, 513-523.	1.3	13
34	The effect of structure directing agents on micro/mesopore structures of aluminosilicates from Indonesian kaolin as deoxygenation catalysts. Microporous and Mesoporous Materials, 2021, 315, 110917.	4.4	13
35	Lewis acid Ni/Al-MCM-41 catalysts for H ₂ -free deoxygenation of <i>Reutealis trisperma</i> oil to biofuels. RSC Advances, 2021, 11, 21885-21896.	3.6	13
36	Hydrogel Nanofibers from Carboxymethyl Sago Pulp and Its Controlled Release Studies as a Methylene Blue Drug Carrier. Fibers, 2019, 7, 56.	4.0	9

Hasliza Bahruji

#	Article	IF	CITATIONS
37	Influence of \$\$hbox {TiO}_{2}\$\$ TiO 2 structural properties on photocatalytic hydrogen gas production. Journal of Chemical Sciences, 2019, 131, 1.	1.5	9
38	Upgrading catalytic activity of NiO/CaO/MgO from natural limestone as catalysts for transesterification of coconut oil to biodiesel. Biomass Conversion and Biorefinery, 2023, 13, 3001-3015.	4.6	9
39	Review on heterogeneous catalysts for the synthesis of perfumery chemicals via isomerization, acetalization and hydrogenation. Flavour and Fragrance Journal, 2021, 36, 509-525.	2.6	9
40	Controlling the Size and Porosity of Sodalite Nanoparticles from Indonesian Kaolin for Pb2+ Removal. Materials, 2022, 15, 2745.	2.9	9
41	Quantum efficiency of Pd/TiO2 catalyst for photocatalytic reforming of methanol in ultra violet region. Chemical Papers, 2019, 73, 2707-2714.	2.2	8
42	Synthesis and characterization of zeolite NaX from Bangka Belitung Kaolin as alternative precursor. Malaysian Journal of Fundamental and Applied Sciences, 2018, 14, 414-418.	0.8	8
43	Biohydrogen production from photodecomposition of various cellulosic biomass wastes using metal-TiO2 catalysts. Biomass Conversion and Biorefinery, 2023, 13, 8701-8712.	4.6	7
44	Barium promoted Ni/Sm ₂ O ₃ catalysts for enhanced CO ₂ methanation. RSC Advances, 2021, 11, 31807-31816.	3.6	6
45	Direct Synthesis of Sodalite from Indonesian Kaolin for Adsorption of Pb2+ Solution, Kinetics, and Isotherm Approach. Bulletin of Chemical Reaction Engineering and Catalysis, 2019, 14, 502-512.	1.1	5
46	Statistical Optimisation using Taguchi Method for Transesterification of Reutealis Trisperma Oil to Biodiesel on CaO-ZnO Catalysts. Bulletin of Chemical Reaction Engineering and Catalysis, 2021, 16, 686-695.	1.1	4
47	Selective Hierarchical Aluminosilicates for Acetalization Reaction with Propylene Glycol. Indonesian Journal of Chemistry, 2019, 19, 975.	0.8	4
48	ldentification of C ₂ –C ₅ products from CO ₂ hydrogenation over PdZn/TiO ₂ –ZSM-5 hybrid catalysts. Faraday Discussions, 2021, 230, 52-67.	3.2	3
49	Ni Nanoparticles on Reducible Metal Oxides (Sm2O3, CeO2, ZnO) as Catalysts for CO2 Methanation. Bulletin of Chemical Reaction Engineering and Catalysis, 2021, 16, 641-650.	1.1	3
50	Highly Active Aluminosilicates with a Hierarchical Porous Structure for Acetalization of 3,4-dimethoxybenzaldehyde. Jurnal Teknologi (Sciences and Engineering), 2014, 69, .	0.4	2
51	Precious Metal Catalysts for Sustainable Energy and Environmental Remediation. , 2017, , 211-251.		1
52	Highly Selective Au/ZnO via Colloidal Deposition for CO2 Hydrogenation to Methanol: Evidence of AuZn Role. Bulletin of Chemical Reaction Engineering and Catalysis, 2021, 16, 44-51.	1.1	1
53	H2O2 Exfoliation of TiO2 for Enhanced Hydrogen Production from Photocatalytic Reforming of Methanol. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 420-429.	1.1	1
54	Photocatalytic Hydrogen Gas Production from NH3 and Alkylamine: Route to Zero Carbon Emission Energy. Catalysis Letters, 2023, 153, 1013-1023.	2.6	1

#	Article	IF	CITATIONS
55	Condensation of Indole with Isatin over AlCl ₃ /Mesoporous Aluminosilicate. Indonesian Journal of Chemistry, 2015, 15, 56-63.	0.8	0