Zhi Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6689586/publications.pdf Version: 2024-02-01

ARTICLE IF CITATIONS Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles. Science, 2008, 322, 932-934. 1,146 1 Quantum spin Hall state in monolayer 1T'-WTe2. Nature Physics, 2017, 13, 683-687. 9 16.7 596 Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage. Science, 2010, 327, 850-853. 12.6 456 The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet 4 2.8 431 type solid electrolytes. Physical Chemistry Chemical Physics, 2014, 16, 18294-18300. Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. 38.1 358 Chemical Society Reviews, 2013, 42, 5833 Ambient-Pressure XPS Study of a Niâ€"Fe Electrocatalyst for the Oxygen Evolution Reaction. Journal of 3.1 336 6 Physical Chemistry C, 2016, 120, 2247-2253. Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation. 3.3 317 Scientific Reports, 2013, 3, 1510. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide 30.8 8 307 fuel cells. Energy and Environmental Science, 2012, 5, 6081. Using "Tender―X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of 284 Solid-Liquid Interface. Scientific Reports, 2015, 5, 9788. Importance of the Metal–Oxide Interface in Catalysis: In Situ Studies of the Water–Gas Shift Reaction 10 by Ambientâ€Pressure Xâ€ray Photoelectron Spectroscopy. Angewandte Chemie - International Edition, 13.8 280 2013, 52, 5101-5105. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nature 11 12.8 267 Communications, 2016, 7, 12695. Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray 12 27.5 257 photoelectron spectroscopy. Nature Materials, 2010, 9, 944-949. Evolution of Structure and Chemistry of Bimetallic Nanoparticle Catalysts under Reaction 13.7 Conditions. Journal of the American Chemical Society, 2010, 132, 8697-8703. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. Review of 14 1.3242 Scientific Instruments, 2010, 81, 053106. Surface Plasmon Enabling Nitrogen Fixation in Pure Water through a Dissociative Mechanism under Mild Conditions. Journal of the American Chemical Society, 2019, 141, 7807-7814. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray 16 12.8 211 spectroscopy. Nature Communications, 2013, 4, 2568. Role of Manganese Oxide in Syngas Conversion to Light Olefins. ACS Catalysis, 2017, 7, 2800-2804. 11.2 188 Graphene cover-promoted metal-catalyzed reactions. Proceedings of the National Academy of Sciences 18 7.1 183 of the United States of America, 2014, 111, 17023-17028.

#	Article	IF	CITATIONS
19	Intrinsic Relation between Catalytic Activity of CO Oxidation on Ru Nanoparticles and Ru Oxides Uncovered with Ambient Pressure XPS. Nano Letters, 2012, 12, 5761-5768.	9.1	182
20	In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions. Scientific Reports, 2012, 2, 715.	3.3	180
21	Toward Practical Application of Functional Conductive Polymer Binder for a High-Energy Lithium-Ion Battery Design. Nano Letters, 2014, 14, 6704-6710.	9.1	172
22	Highly Enhanced Concentration and Stability of Reactive Ce ³⁺ on Doped CeO ₂ Surface Revealed In Operando. Chemistry of Materials, 2012, 24, 1876-1882.	6.7	169
23	Reaction-Induced Strong Metal–Support Interactions between Metals and Inert Boron Nitride Nanosheets. Journal of the American Chemical Society, 2020, 142, 17167-17174.	13.7	164
24	Hydrogenation of CO ₂ to Methanol on CeO _{<i>x</i>} /Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal–Oxide Interface and Importance of Ce ³⁺ Sites. Journal of Physical Chemistry C, 2016, 120, 1778-1784.	3.1	156
25	Selfâ€Assembly of Thioureaâ€Crosslinked Graphene Oxide Framework Membranes toward Separation of Small Molecules. Advanced Materials, 2018, 30, e1705775.	21.0	154
26	Surface coordination layer passivates oxidation of copper. Nature, 2020, 586, 390-394.	27.8	154
27	Altering Hydrogenation Pathways in Photocatalytic Nitrogen Fixation by Tuning Local Electronic Structure of Oxygen Vacancy with Dopant. Angewandte Chemie - International Edition, 2021, 60, 16085-16092.	13.8	152
28	Pd-Modified ZnO–Au Enabling Alkoxy Intermediates Formation and Dehydrogenation for Photocatalytic Conversion of Methane to Ethylene. Journal of the American Chemical Society, 2021, 143, 269-278.	13.7	151
29	Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy and Environmental Science, 2015, 8, 2409-2416.	30.8	149
30	Phase Transformation and Lithiation Effect on Electronic Structure of Li _{<i>x</i>} FePO ₄ : An In-Depth Study by Soft X-ray and Simulations. Journal of the American Chemical Society, 2012, 134, 13708-13715.	13.7	136
31	Hexagonal Boron Nitride Cover on Pt(111): A New Route to Tune Molecule–Metal Interaction and Metal-Catalyzed Reactions. Nano Letters, 2015, 15, 3616-3623.	9.1	131
32	Direct Work Function Measurement by Gas Phase Photoelectron Spectroscopy and Its Application on PbS Nanoparticles. Nano Letters, 2013, 13, 6176-6182.	9.1	128
33	In situ ambient pressure XPS observation of surface chemistry and electronic structure of α-Fe2O3 and γ-Fe2O3 nanoparticles. Applied Surface Science, 2018, 455, 1019-1028.	6.1	126
34	Strong correlations and orbital texture in single-layer 1T-TaSe2. Nature Physics, 2020, 16, 218-224.	16.7	126
35	Recent Progress on Synchrotronâ€Based Inâ€5itu Soft Xâ€ray Spectroscopy for Energy Materials. Advanced Materials, 2014, 26, 7710-7729.	21.0	123
36	CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions. Journal of Catalysis, 2014, 312, 17-25.	6.2	122

#	Article	IF	CITATIONS
37	In Situ Oxidation Study of Pt(110) and Its Interaction with CO. Journal of the American Chemical Society, 2011, 133, 20319-20325.	13.7	120
38	The Effects of Native Oxide Surface Layer on the Electrochemical Performance of Si Nanoparticle-Based Electrodes. Journal of the Electrochemical Society, 2011, 158, A1260.	2.9	116
39	Structural and electronic properties of SnO2. Journal of Alloys and Compounds, 2013, 579, 50-56.	5.5	114
40	Elucidating the alkaline oxygen evolution reaction mechanism on platinum. Journal of Materials Chemistry A, 2017, 5, 11634-11643.	10.3	109
41	<i>InÂSitu</i> X-Ray Photoelectron Spectroscopy of Model Catalysts: At the Edge of the Gap. Physical Review Letters, 2013, 110, 117601.	7.8	107
42	CO2 Hydrogenation Studies on Co and CoPt Bimetallic Nanoparticles Under Reaction Conditions Using TEM, XPS and NEXAFS. Topics in Catalysis, 2011, 54, 778-785.	2.8	103
43	Learning from the past: Rare ε-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Scientific Reports, 2014, 4, 4941.	3.3	100
44	Aqueous solution/metal interfaces investigated in operando by photoelectron spectroscopy. Faraday Discussions, 2015, 180, 35-53.	3.2	99
45	Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes. Applied Physics Letters, 2008, 92, .	3.3	98
46	Formation of Nanometer-Sized Surface Platinum Oxide Clusters on a Stepped Pt(557) Single Crystal Surface Induced by Oxygen: A High-Pressure STM and Ambient-Pressure XPS Study. Nano Letters, 2012, 12, 1491-1497.	9.1	95
47	In situ investigation of electrochemical devices using ambient pressure photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 84-92.	1.7	95
48	Enhanced Nickel-Catalyzed Methanation Confined under Hexagonal Boron Nitride Shells. ACS Catalysis, 2016, 6, 6814-6822.	11.2	95
49	Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy. Scientific Reports, 2017, 7, 43298.	3.3	94
50	Surface termination and roughness of Ge(100) cleaned by HF and HCl solutions. Applied Physics Letters, 2006, 88, 021903.	3.3	92
51	Mechanistic Studies of Water Electrolysis and Hydrogen Electro-Oxidation on High Temperature Ceria-Based Solid Oxide Electrochemical Cells. Journal of the American Chemical Society, 2013, 135, 11572-11579.	13.7	90
52	In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures. Journal of Physical Chemistry C, 2013, 117, 16087-16094.	3.1	89
53	High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2. Nature Communications, 2022, 13, 2806.	12.8	89
54	Prospect for high brightness Ill–nitride electron emitter. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 3042.	1.6	82

#	Article	IF	CITATIONS
55	CO ₂ activation and carbonate intermediates: an operando AP-XPS study of CO ₂ electrolysis reactions on solid oxide electrochemical cells. Physical Chemistry Chemical Physics, 2014, 16, 11633-11639.	2.8	82
56	In Situ Characterization of Ceria Oxidation States in High-Temperature Electrochemical Cells with Ambient Pressure XPS. Journal of Physical Chemistry C, 2010, 114, 19853-19861.	3.1	81
57	X-ray spectroscopy of energy materials under in situ/operando conditions. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200, 264-273.	1.7	81
58	The Mechanism of SEI Formation on a Single Crystal Si(100) Electrode. Journal of the Electrochemical Society, 2015, 162, A603-A607.	2.9	80
59	Intrinsic Ligand Effect Governing the Catalytic Activity of Pd Oxide Thin Films. ACS Catalysis, 2014, 4, 3330-3334.	11.2	79
60	Tuning phase transitions in FeSe thin flakes by field-effect transistor with solid ion conductor as the gate dielectric. Physical Review B, 2017, 95, .	3.2	77
61	Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates. Nature Communications, 2020, 11, 849.	12.8	75
62	Restructuring of hex-Pt(100) under CO Gas Environments: Formation of 2-D Nanoclusters. Nano Letters, 2009, 9, 2167-2171.	9.1	73
63	Observing the Electrochemical Oxidation of Co Metal at the Solid/Liquid Interface Using Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 666-671.	2.6	73
64	Electrochemical Cutting in Weak Aqueous Electrolytes: The Strategy for Efficient and Controllable Preparation of Graphene Quantum Dots. Langmuir, 2018, 34, 250-258.	3.5	71
65	A Reconstructed Cu ₂ P ₂ O ₇ Catalyst for Selective CO ₂ Electroreduction to Multicarbon Products. Angewandte Chemie - International Edition, 2022, 61, e202114238.	13.8	71
66	Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1863.	1.6	70
67	Nature of Active Sites on Cu–CeO ₂ Catalysts Activated by High-Temperature Thermal Aging. ACS Catalysis, 2020, 10, 12385-12392.	11.2	69
68	Pt-Mediated Reversible Reduction and Expansion of CeO ₂ in Pt Nanoparticle/Mesoporous CeO ₂ Catalyst: In Situ X-ray Spectroscopy and Diffraction Studies under Redox (H ₂ and O ₂) Atmospheres. Journal of Physical Chemistry C, 2013, 117, 26608-26616.	3.1	67
69	Rh _{1â[~]x} Pd _x nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. Physical Chemistry Chemical Physics, 2011, 13, 2556-2562.	2.8	66
70	Surface Composition and Catalytic Evolution of Au x Pd1â^'x (xÂ=Â0.25, 0.50 and 0.75) Nanoparticles Under CO/O2 Reaction in Torr Pressure Regime and at 200°C. Catalysis Letters, 2011, 141, 633-640.	2.6	63
71	Multielement Activity Mapping and Potential Mapping in Solid Oxide Electrochemical Cells through the use of <i>operando</i> XPS. ACS Catalysis, 2012, 2, 2297-2304.	11.2	63
72	A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes. Scientific Reports, 2017, 7, 41217.	3.3	60

#	Article	IF	CITATIONS
73	Influence of Hydrocarbon and CO ₂ on the Reversibility of Li–O ₂ Chemistry Using <i>In Situ</i> Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 25948-25954.	3.1	59
74	Role of joule heating effect and bulk-surface phases in voltage-driven metal-insulator transition in VO2 crystal. Applied Physics Letters, 2013, 103, .	3.3	59
75	Origin of the Monochromatic Photoemission Peak in Diamondoid Monolayers. Nano Letters, 2009, 9, 57-61.	9.1	58
76	Role of oxygen in semiconductor negative electron affinity photocathodes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2721.	1.6	57
77	Magnetic ordering in tetragonal FeS: Evidence for strong itinerant spin fluctuations. Physical Review B, 2011, 83, .	3.2	57
78	Charge State of Gold Nanoparticles Supported on Titania under Oxygen Pressure. Angewandte Chemie - International Edition, 2011, 50, 2266-2269.	13.8	57
79	In Situ Characterization of Catalysis and Electrocatalysis Using APXPS. ACS Catalysis, 2021, 11, 1464-1484.	11.2	57
80	Electron scattering study within the depletion region of the GaN(0001) and the GaAs(100) surface. Applied Physics Letters, 2004, 85, 1541-1543.	3.3	55
81	Observation of Oxygen Vacancy Filling under Water Vapor in Ceramic Proton Conductors in Situ with Ambient Pressure XPS. Chemistry of Materials, 2013, 25, 4690-4696.	6.7	53
82	Direct Mapping of Band Positions in Doped and Undoped Hematite during Photoelectrochemical Water Splitting. Journal of Physical Chemistry Letters, 2017, 8, 5579-5586.	4.6	53
83	Optimized cleaning method for producing device quality InP(100) surfaces. Journal of Applied Physics, 2005, 97, 124902.	2.5	51
84	Rapid synthesis of hierarchical nanostructured Polyaniline hydrogel for high power density energy storage application and three-dimensional multilayers printing. Journal of Materials Science, 2016, 51, 4274-4282.	3.7	51
85	Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application. Electrochemical and Solid-State Letters, 2011, 14, A61-A63.	2.2	50
86	Probing the Surface of Platinum during the Hydrogen Evolution Reaction in Alkaline Electrolyte. Journal of Physical Chemistry B, 2018, 122, 864-870.	2.6	50
87	An APXPS endstation for gas–solid and liquid–solid interface studies at SSRF. Nuclear Science and Techniques/Hewuli, 2019, 30, 1.	3.4	50
88	<i>In Situ</i> Ambient Pressure Studies of the Chemistry of NO ₂ and Water on Rutile TiO ₂ (110). Langmuir, 2010, 26, 2445-2451.	3.5	49
89	Measuring individual overpotentials in an operating solid-oxide electrochemical cell. Physical Chemistry Chemical Physics, 2010, 12, 12138.	2.8	48
90	Reversible structural transformation of FeOx nanostructures on Pt under cycling redox conditions and its effect on oxidation catalysis. Physical Chemistry Chemical Physics, 2013, 15, 14708.	2.8	48

#	Article	IF	CITATIONS
91	Preparation of clean GaAs(100) studied by synchrotron radiation photoemission. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 212-218.	2.1	47
92	In situ XPS study of the adsorption and reactions of NO and O2 on gold nanoparticles deposited on TiO2 and SiO2. Journal of Catalysis, 2011, 283, 119-123.	6.2	47
93	Reversible formation of a PdCx phase in Pd nanoparticles upon CO and O2 exposure. Physical Chemistry Chemical Physics, 2012, 14, 4796.	2.8	47
94	Nature of Interface Confinement Effect in Oxide/Metal Catalysts. Journal of Physical Chemistry C, 2015, 119, 27556-27561.	3.1	45
95	Kinetically Enhanced Bubble-Exfoliation of Graphite toward High-Yield Preparation of High-Quality Graphene. Chemistry of Materials, 2017, 29, 8578-8582.	6.7	45
96	Interface Science Using Ambient Pressure Hard X-ray Photoelectron Spectroscopy. Surfaces, 2019, 2, 78-99.	2.3	45
97	Simple method for cleaning gallium nitride (0001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1784-1786.	2.1	44
98	Electronic structure of monolayer 1T′-MoTe2 grown by molecular beam epitaxy. APL Materials, 2018, 6, .	5.1	44
99	Reactivity of Au nanoparticles supported over SiO2 and TiO2 studied by ambient pressure photoelectron spectroscopy. Catalysis Today, 2009, 143, 158-166.	4.4	43
100	Promoter Effect of Early Stage Grown Surface Oxides: A Near-Ambient-Pressure XPS Study of CO Oxidation on PtSn Bimetallics. Journal of Physical Chemistry Letters, 2012, 3, 3707-3714.	4.6	43
101	High-Pressure XPS of Crotyl Alcohol Selective Oxidation over Metallic and Oxidized Pd(111). ACS Catalysis, 2012, 2, 2235-2241.	11.2	43
102	In situ study of oxidation states and structure of 4nm CoPt bimetallic nanoparticles during CO oxidation using X-ray spectroscopies in comparison with reaction turnover frequency. Catalysis Today, 2012, 182, 54-59.	4.4	42
103	Deactivation of Ru Catalysts under Catalytic CO Oxidation by Formation of Bulk Ru Oxide Probed with Ambient Pressure XPS. Journal of Physical Chemistry C, 2013, 117, 13108-13113.	3.1	42
104	Organometallic Ruthenium Nanoparticles as Model Catalysts for CO Hydrogenation: A Nuclear Magnetic Resonance and Ambient-Pressure X-ray Photoelectron Spectroscopy Study. ACS Catalysis, 2014, 4, 3160-3168.	11.2	42
105	Negative electron affinity group III-nitride photocathode demonstrated as a high performance electron source. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 3565.	1.6	41
106	Influence of Taoism on the invention of the purple pigment used on the Qin terracotta warriors. Journal of Archaeological Science, 2007, 34, 1878-1883.	2.4	41
107	PbS Nanoparticles Capped with Tetrathiafulvalenetetracarboxylate: Utilizing Energy Level Alignment for Efficient Carrier Transport. ACS Nano, 2014, 8, 2532-2540.	14.6	41
108	Note: Fixture for characterizing electrochemical devices in-operando in traditional vacuum systems. Review of Scientific Instruments, 2010, 81, 086104.	1.3	39

#	Article	IF	CITATIONS
109	Nonpercolative metal-insulator transition in VO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>single crystals. Physical Review B, 2011, 84, .</mml:math 	3.2	39
110	In Situ Observation of Water Dissociation with Lattice Incorporation at FeO Particle Edges Using Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy. Langmuir, 2011, 27, 2146-2149.	3.5	38
111	Preparation of clean InP(100) surfaces studied by synchrotron radiation photoemission. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 219-225.	2.1	37
112	The work function of submonolayer cesium-covered gold: A photoelectron spectroscopy study. Journal of Chemical Physics, 2008, 129, 024709.	3.0	37
113	Oxidation and reduction of size-selected subnanometer Pd clusters on Al2O3 surface. Journal of Chemical Physics, 2013, 138, 214304.	3.0	37
114	Optimization and characterization of III–V surface cleaning. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1953.	1.6	36
115	Exploring surface science and restructuring in reactive atmospheres of colloidally prepared bimetallic CuNi and CuCo nanoparticles on SiO2in situ using ambient pressure X-ray photoelectron spectroscopy. Faraday Discussions, 2013, 162, 31.	3.2	36
116	CO ₂ Activation on Ni(111) and Ni(100) Surfaces in the Presence of H ₂ O: An Ambient-Pressure X-ray Photoelectron Spectroscopy Study. Journal of Physical Chemistry C, 2019, 123, 12176-12182.	3.1	36
117	Anode coverage for enhanced electrochemical oxidation: a green and efficient strategy towards water-dispersible graphene. Green Chemistry, 2018, 20, 1306-1315.	9.0	35
118	In-situ study of the catalytic oxidation of CO on a Pt(110) surface using ambient pressure X-ray photoelectron spectroscopy. Surface Science, 2009, 603, L35-L38.	1.9	33
119	A Step toward the Wet Surface Chemistry of Glycine and Alanine on Cu{110}: Destabilization and Decomposition in the Presence of Near-Ambient Water Vapor. Journal of the American Chemical Society, 2011, 133, 6659-6667.	13.7	33
120	Ultralow Pt Catalyst for Formaldehyde Removal: The Determinant Role of Support. IScience, 2018, 9, 487-501.	4.1	33
121	Oxygen Evolution Reaction over the Au/YSZ Interface at High Temperature. Angewandte Chemie - International Edition, 2019, 58, 4617-4621.	13.8	33
122	Fine cubic Cu2O nanocrystals as highly selective catalyst for propylene epoxidation with molecular oxygen. Nature Communications, 2021, 12, 5921.	12.8	33
123	Water Growth on GeO ₂ /Ge(100) Stack and Its Effect on the Electronic Properties of GeO ₂ . Journal of Physical Chemistry C, 2013, 117, 165-171.	3.1	32
124	Reactivity Differences of Nanocrystals and Continuous Films of α-Fe ₂ O ₃ on Au(111) Studied with In Situ X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 22619-22623.	3.1	31
125	Effect of O ₂ , CO, and NO on Surface Segregation in a Rh _{0.5} Pd _{0.5} Bulk Crystal and Comparison to Rh _{0.5} Pd _{0.5} Nanoparticles. Langmuir, 2010, 26, 16362-16367.	3.5	31
126	Surface Composition Changes of Redox Stabilized Bimetallic CoCu Nanoparticles Supported on Silica under H ₂ and O ₂ Atmospheres and During Reaction between CO ₂ and H ₂ : In Situ X-ray Spectroscopic Characterization. Journal of Physical Chemistry C, 2013, 117, 21803-21809.	3.1	31

#	Article	IF	CITATIONS
127	Exploring the Environmental Photochemistry on the TiO ₂ (110) Surface in Situ by Near Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 7076-7085.	3.1	31
128	The Birth of Nickel Phosphide Catalysts: Monitoring Phosphorus Insertion into Nickel. ChemCatChem, 2017, 9, 2318-2323.	3.7	31
129	Interfacial Enhancement by γâ€Al ₂ O ₃ of Electrochemical Oxidative Dehydrogenation of Ethane to Ethylene in Solid Oxide Electrolysis Cells. Angewandte Chemie - International Edition, 2019, 58, 16043-16046.	13.8	31
130	Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction. Nature Communications, 2020, 11, 2312.	12.8	31
131	Exploiting Twoâ€Ðimensional Bi ₂ O ₂ Se for Trace Oxygen Detection. Angewandte Chemie - International Edition, 2020, 59, 17938-17943.	13.8	31
132	Roles of oxygen and water vapor in the oxidation of halogen terminated Ge(111) surfaces. Applied Physics Letters, 2006, 89, 231925.	3.3	30
133	Formation of cesium peroxide and cesium superoxide on InP photocathode activated by cesium and oxygen. Journal of Applied Physics, 2007, 102, 074908.	2.5	30
134	Photoemission study of the electronic structure of valence band convergent SnSe. Physical Review B, 2017, 96, .	3.2	30
135	48 GHz High-Performance Ge-on-SOI Photodetector With Zero-Bias 40 Gbps Grown by Selective Epitaxial Growth. Journal of Lightwave Technology, 2017, 35, 5306-5310.	4.6	30
136	Robust <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>CsBr</mml:mi><mml:mo>/</mml:mo><mml:mi>Cu</mml:mi></mml:math> photocathc for the linac coherent light source. Physical Review Special Topics: Accelerators and Beams, 2008, 11, .	des	29
137	In Situ Characterizations of Nanostructured SnO _{<i>x</i>} /Pt(111) Surfaces Using Ambient-Pressure XPS (APXPS) and High-Pressure Scanning Tunneling Microscopy (HPSTM) . Journal of Physical Chemistry C, 2014, 118, 1935-1943.	3.1	29
138	Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface. Journal of Physical Chemistry B, 2018, 122, 801-809.	2.6	29
139	Stabilizing the Meniscus for Operando Characterization of Platinum During the Electrolyte-Consuming Alkaline Oxygen Evolution Reaction. Topics in Catalysis, 2018, 61, 2152-2160.	2.8	28
140	Observation of Substrate Orientation-Dependent Oxygen Defect Filling in Thin WO _{3â^îî} /TiO ₂ Pulsed Laser-Deposited Films with in Situ XPS at High Oxygen Pressure and Temperature. Chemistry of Materials, 2012, 24, 3473-3480.	6.7	27
141	A near ambient pressure XPS study of subnanometer silver clusters on Al ₂ O ₃ and TiO ₂ ultrathin film supports. Physical Chemistry Chemical Physics, 2014, 16, 26645-26652.	2.8	27
142	Surface segregation and oxidation of Pt3Ni(1 1 1) alloys under oxygen environment. Catalysis Today, 2016, 260, 3-7.	4.4	26
143	In situ observation of H2 dissociation on the ZnO (0001) surface under high pressure of hydrogen using ambient-pressure XPS. International Journal of Hydrogen Energy, 2018, 43, 8655-8661.	7.1	26
144	Heterogeneous Synergetic Effect of Metal–Oxide Interfaces for Efficient Hydrogen Evolution in Alkaline Solutions. ACS Applied Materials & Interfaces, 2021, 13, 13838-13847.	8.0	26

#	Article	IF	CITATIONS
145	Structure and Chemical State of the Pt(557) Surface during Hydrogen Oxidation Reaction Studied by in Situ Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society, 2013, 135, 12560-12563.	13.7	25
146	Hard X-rays in–soft X-rays out: An operando piggyback view deep into a charging lithium ion battery with X-ray Raman spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200, 257-263.	1.7	25
147	Cooperative Catalysis of Nickel and Nickel Oxide for Efficient Reduction of CO ₂ to CH ₄ . ChemCatChem, 2019, 11, 1295-1302.	3.7	25
148	Electrochemically controlled energy release from a norbornadiene-based solar thermal fuel: increasing the reversibility to 99.8% using HOPG as the electrode material. Journal of Materials Chemistry A, 2020, 8, 15658-15664.	10.3	25
149	An Electrochemical, Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of Si/TiO ₂ /Ni/Electrolyte Interfaces. Journal of the Electrochemical Society, 2016, 163, H139-H146.	2.9	24
150	Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells. IUCrJ, 2018, 5, 141-149.	2.2	24
151	Realization of wafer-scale nanogratings with sub-50 nm period through vacancy epitaxy. Nature Communications, 2019, 10, 2437.	12.8	24
152	Steering the reaction pathway of syngas-to-light olefins with coordination unsaturated sites of ZnGaOx spinel. Nature Communications, 2022, 13, 2742.	12.8	24
153	Observation of insulating–insulating monoclinic structural transition in macroâ€sized VO ₂ single crystals. Physica Status Solidi - Rapid Research Letters, 2011, 5, 107-109.	2.4	23
154	Operando Analyses of Solar Fuels Light Absorbers and Catalysts. Electrochimica Acta, 2016, 211, 711-719.	5.2	23
155	CO2 Activation on Cobalt Surface in the Presence of H2O: An Ambient-Pressure X-ray Photoelectron Spectroscopy Study. Catalysis Letters, 2018, 148, 1686-1691.	2.6	21
156	Surface Orientation and Pressure Dependence of CO ₂ Activation on Cu Surfaces. Journal of Physical Chemistry C, 2020, 124, 27511-27518.	3.1	20
157	Study of electro-chemical properties of metal–oxide interfaces using a newly constructed ambient pressure X-ray photoelectron spectroscopy endstation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 645, 260-265.	1.6	19
158	Iron Resonant Photoemission Spectroscopy on Anodized Hematite Points to Electron Hole Doping during Anodization. ChemPhysChem, 2012, 13, 2937-2944.	2.1	19
159	In Situ Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy Studies of Ethylene-Induced Structural Changes on the Pt(100)-hex Surface. Journal of Physical Chemistry C, 2013, 117, 2799-2804.	3.1	19
160	Origin of interfacial conductivity at complex oxide heterointerfaces: Possibility of electron transfer from water chemistry at surface oxygen vacancies. Physical Review Materials, 2018, 2, .	2.4	19
161	Narrow cone emission from negative electron affinity photocathodes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2758.	1.6	18
162	CsBr photocathode at 257nm: A rugged high current density electron source. Applied Physics Letters, 2006, 89, 111114.	3.3	18

#	Article	IF	CITATIONS
163	In Situ Spectroscopic Observation of Activation and Transformation of Tantalum Suboxides. Journal of Physical Chemistry A, 2010, 114, 2489-2497.	2.5	18
164	In-situ photoelectron spectroscopy with online activity measurement for catalysis research. Current Applied Physics, 2012, 12, 1292-1296.	2.4	18
165	Electronic structure and excitations in oxygen deficient <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mtext>CeO</mml:mtext> DFT calculations. Physical Review B, 2014, 89, .</mml:mrow></mml:msub></mml:math 	<\$raml:mr	o ₩8> < mml:r
166	Preparation of hydrophilic luffa sponges and their water absorption performance. Carbohydrate Polymers, 2016, 147, 178-187.	10.2	18
167	Crystal-plane-dependent redox reaction on Cu surfaces. Nano Research, 2020, 13, 1677-1685.	10.4	18
168	Correlation of O (1s) and Fe (2p) near edge x-ray absorption fine structure spectra and electrical conductivity of La1â^'xSrxFe0.75Ni0.25O3â^´Î´. Applied Physics Letters, 2009, 95, 174108.	3.3	17
169	Surface and Bulk Oxygen Vacancy Defect States near the Fermi Level in 125 nm WO _{3â^Î} /TiO ₂ (110) Films: A Resonant Valence Band Photoemission Spectroscopy Study. Journal of Physical Chemistry C, 2011, 115, 16411-16417.	3.1	17
170	Ozoneâ€Induced Band Bending on Metalâ€Oxide Surfaces Studied under Environmental Conditions. ChemPhysChem, 2013, 14, 2419-2425.	2.1	17
171	Atomic-Layer Electroless Deposition: A Scalable Approach to Surface-Modified Metal Powders. Langmuir, 2014, 30, 4820-4829.	3.5	17
172	Surface Chemistry of Alanine on Ni{111}. Journal of Physical Chemistry C, 2015, 119, 26566-26574.	3.1	17
173	Sn composition graded GeSn photodetectors on Si substrate with cutoff wavelength of 3.3 <i>μ</i> m for mid-infrared Si photonics. Applied Physics Letters, 2022, 120, .	3.3	17
174	In situ characterization of catalytic activity of graphene stabilized small-sized Pd nanoparticles for CO oxidation. Applied Surface Science, 2013, 283, 1076-1079.	6.1	16
175	Influence of Step Geometry on the Reconstruction of Stepped Platinum Surfaces under Coadsorption of Ethylene and CO. Journal of Physical Chemistry Letters, 2014, 5, 2626-2631.	4.6	16
176	In situ study of the electronic structure of atomic layer deposited oxide ultrathin films upon oxygen adsorption using ambient pressure XPS. Catalysis Science and Technology, 2016, 6, 6778-6783.	4.1	16
177	Addressing the sensitivity of signals from solid/liquid ambient pressure XPS (APXPS) measurement. Journal of Chemical Physics, 2020, 153, 044709.	3.0	16
178	Strong Interface Enhanced Hydrogen Evolution over Molybdenum-Based Catalysts. ACS Applied Energy Materials, 2020, 3, 5219-5228.	5.1	16
179	Formation of multifaceted nano-groove structure on rutile TiO2 photoanode for efficient electron-hole separation and water splitting. Journal of Energy Chemistry, 2022, 65, 19-25.	12.9	16
180	High current density GaNâ^•CsBr heterojunction photocathode with improved photoyield. Applied Physics Letters, 2007, 90, 231115.	3.3	15

#	Article	IF	CITATIONS
181	Electron sources utilizing thin CsBr coatings. Microelectronic Engineering, 2009, 86, 529-531.	2.4	15
182	Electrochemical intermediate species and reaction pathway in H2 oxidation on solid electrolytes. Chemical Communications, 2012, 48, 8338.	4.1	15
183	Intermediates Arising from the Water–Gas Shift Reaction over Cu Surfaces: From UHV to Near Atmospheric Pressures. Topics in Catalysis, 2015, 58, 271-280.	2.8	15
184	Charge Distribution on S and Intercluster Bond Evolution in Mo ₆ S ₈ during the Electrochemical Insertion of Small Cations Studied by X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 1159-1166.	4.6	15
185	Electrochemically modified graphite for fast preparation of large-sized graphene oxide. Journal of Colloid and Interface Science, 2019, 542, 387-391.	9.4	15
186	Photoelectron emission studies in CsBr at 257â€,nm. Journal of Vacuum Science & Technology B, 2006, 24, 2886.	1.3	14
187	Entanglement of charge transfer, hole doping, exchange interaction, and octahedron tilting angle and their influence on the conductivity of La1â"xSrxFe0.75Ni0.25O3â"Î: A combination of x-ray spectroscopy and diffraction. Journal of Applied Physics, 2010, 108, .	2.5	14
188	Effect of Rhodium Distribution on Thermal Stability of Nanoporous Palladium–Rhodium Powders. Chemistry of Materials, 2012, 24, 996-1004.	6.7	14
189	Surface Amorphous Oxides Induced Electron Transfer into Complex Oxide Heterointerfaces. Advanced Materials Interfaces, 2018, 5, 1801216.	3.7	14
190	Surface dipole formation and lowering of the work function by Cs adsorption on InP(100) surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1351-1356.	2.1	13
191	Operando Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Sodium–Oxygen Redox Reactions. Topics in Catalysis, 2018, 61, 2123-2128.	2.8	13
192	Modifying the Electrocatalytic Selectivity of Oxidation Reactions with Ionic Liquids. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
193	Degradation of polyvinyl alcohol under mechanothermal stretching. Journal of Molecular Modeling, 2013, 19, 3245-3253.	1.8	12
194	Mobility on the reconstructed Pt(100)-hex surface in ethylene and in its mixture with hydrogen and carbon monoxide. Chemical Communications, 2013, 49, 6903.	4.1	12
195	Oxygen Evolution Reaction over the Au/YSZ Interface at High Temperature. Angewandte Chemie, 2019, 131, 4665-4669.	2.0	12
196	Evidence of Pure Spin-Current Generated by Spin Pumping in Interface-Localized States in Hybrid Metal–Silicon–Metal Vertical Structures. Nano Letters, 2019, 19, 90-99.	9.1	12
197	Potential Control of Oxygen Non-Stoichiometry in Cerium Oxide and Phase Transition Away from Equilibrium. ACS Applied Materials & Interfaces, 2020, 12, 31514-31521.	8.0	12
198	Surface Structure of KIO ₃ Grown by Heterogeneous Reaction of Ozone with KI (001). Journal of Physical Chemistry C, 2008, 112, 18287-18290.	3.1	11

#	Article	IF	CITATIONS
199	Comparative study of GeO2/Ge and SiO2/Si structures on anomalous charging of oxide films upon water adsorption revealed by ambient-pressure X-ray photoelectron spectroscopy. Journal of Applied Physics, 2016, 120, .	2.5	11
200	Template-free Synthesis of Stable Cobalt Manganese Spinel Hollow Nanostructured Catalysts for Highly Water-Resistant CO Oxidation. IScience, 2019, 21, 19-30.	4.1	11
201	Selective electrooxidation of 2-propanol on Pt nanoparticles supported on Co ₃ O ₄ : an in-situ study on atomically defined model systems. Journal Physics D: Applied Physics, 2021, 54, 164002.	2.8	11
202	Nano-graphoepitaxy of semiconductors for 3D integration. Microelectronic Engineering, 2007, 84, 891-894.	2.4	10
203	Generation and oxidation of aerosol deposited PdAg nanoparticles. Surface Science, 2013, 616, 186-191.	1.9	10
204	Nanocrystal Superlattice Embedded within an Inorganic Semiconducting Matrix by in Situ Ligand Exchange: Fabrication and Morphology. Chemistry of Materials, 2015, 27, 2755-2758.	6.7	10
205	Ambient pressure mapping of resonant Auger spectroscopy at BL02B01 at the Shanghai Synchrotron Radiation Facility. Review of Scientific Instruments, 2020, 91, 123108.	1.3	10
206	A rechargeable all-solid-state sodium peroxide (Na ₂ O ₂) battery with low overpotential. Journal Physics D: Applied Physics, 2021, 54, 174005.	2.8	10
207	In situ Dispersed Nano-Au on Zr-Suboxides as Active Cathode for Direct CO2 Electroreduction in Solid Oxide Electrolysis Cells. Nano Letters, 2021, 21, 6952-6959.	9.1	10
208	Delocalized electrochemical exfoliation toward high-throughput fabrication of high-quality graphene. Chemical Engineering Journal, 2022, 428, 131122.	12.7	10
209	CsBrâ^•GaN heterojunction photoelectron source. Journal of Vacuum Science & Technology B, 2007, 25, 2266.	1.3	9
210	Angular dependence of the photoelectron energy distribution of InP(100) and GaAs(100) negative electron affinity photocathodes. Applied Physics Letters, 2007, 91, .	3.3	9
211	Evaluation of electron energy spread in CsBr based photocathodes. Journal of Vacuum Science & Technology B, 2008, 26, 2085-2090.	1.3	9
212	The effectiveness of HCl and HF cleaning of Si0.85Ge0.15 surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 1248-1250.	2.1	9
213	lron-resonant valence band photoemission and oxygen near edge x-ray absorption fine structure study on La1â^'xSrxFe0.75Ni0.25O3â^îÎ. Applied Physics Letters, 2010, 97, 124101.	3.3	9
214	A high pressure x-ray photoelectron spectroscopy study of CO oxidation over Rh(100). Journal of Physics Condensed Matter, 2014, 26, 055003.	1.8	9
215	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>CaA</mml:mi><mml:msub><mm mathvariant="normal">I<mml:mn>2</mml:mn></mm </mml:msub><mml:mi mathvariant="normal">S<mml:msub><mml:mi mathvariant="normal">i<mml:msub></mml:msub></mml:mi </mml:msub></mml:mi </mml:mrow> .	l:mi 3.2	9
216	Physical Review B, 2020, 102, . Lamellar crystallization of silicon for 3-dimensional integration. Microelectronic Engineering, 2007, 84, 1186-1189.	2.4	8

#	Article	IF	CITATIONS
217	Photoluminescence of diamondoid crystals. Journal of Applied Physics, 2011, 110, .	2.5	8
218	Control of the surface atomic population of Rh0.5Pd0.5 bimetallic nanoparticles supported on CeO2. Catalysis Today, 2016, 260, 95-99.	4.4	8
219	Altering Hydrogenation Pathways in Photocatalytic Nitrogen Fixation by Tuning Local Electronic Structure of Oxygen Vacancy with Dopant. Angewandte Chemie, 2021, 133, 16221-16228.	2.0	8
220	<i>In</i> - <i>situ</i> APXPS and STM Study of the Activation of H ₂ on ZnO(10\${m{ar 1}}0) Surface. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 1366-1372.	4.9	8
221	In-Situ Investigation of SOFC Patterned Electrodes using Ambient-Pressure X-ray Photoelectron Spectroscopy. ECS Transactions, 2009, 25, 335-343.	0.5	7
222	Interfacial Dushman-like Chemistry in Hydrated KIO ₃ Layers Grown on KI. Journal of Physical Chemistry C, 2010, 114, 14093-14100.	3.1	7
223	In-Situ Probing of H2O Effects on a Ru-Complex Adsorbed on TiO2 Using Ambient Pressure Photoelectron Spectroscopy. Topics in Catalysis, 2016, 59, 583-590.	2.8	7
224	Disorder in Aqueous Solutions and Peak Broadening in X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 10600-10606.	2.6	7
225	Photoelectrochemical performance enhancement of low-energy Ar+ irradiation modified TiO2. Applied Surface Science, 2021, 541, 148527.	6.1	7
226	Could Irradiation Introduce Oxidized Oxygen Signals in Resonant Inelastic X-ray Scattering of Battery Electrodes?. Journal of Physical Chemistry Letters, 2021, 12, 1138-1143.	4.6	7
227	Large-area TaN superconducting microwire single photon detectors for X-ray detection. Optics Express, 2021, 29, 21400.	3.4	7
228	Design and performance of bending-magnet beamline BL02B at the SSRF. Journal of Synchrotron Radiation, 2019, 26, 543-550.	2.4	7
229	Study on mechanism of crystallization in HfO2 films on Si substrates by in-depth profile analysis using photoemission spectroscopy. Journal of Applied Physics, 2009, 106, 064103.	2.5	6
230	In Situ XPS for Evaluating Ceria Oxidation States in SOFC Anodes. ECS Transactions, 2009, 16, 253-263.	0.5	6
231	Correlation of conductivity and angle integrated valence band photoemission characteristics in single crystal iron perovskites for 300K <t<800k: 181,="" 2010,="" 56-62.<="" and="" bulk="" comparison="" electron="" journal="" methods.="" of="" phenomena,="" related="" sensitive="" spectroscopy="" surface="" td=""><td>1.7</td><td>6</td></t<800k:>	1.7	6
232	Environment Controlled Dewetting of Rh–Pd Bilayers: A Route for Core–Shell Nanostructure Synthesis. Journal of Physical Chemistry C, 2012, 116, 14401-14407.	3.1	6
233	Operando Tracking of Electrochemical Activity in Solid Oxide Electrochemical Cells by using Nearâ€Infrared Imaging. ChemElectroChem, 2015, 2, 1527-1534.	3.4	6
234	Structure, Magnetism, and the Interaction of Water with Ti-Doped Fe3O4 Surfaces. Langmuir, 2019, 35, 13872-13879.	3.5	6

#	Article	IF	CITATIONS
235	Electron-plasmon interaction induced plasmonic-polaron band replication in epitaxial perovskite SrIrO3 films. Science Bulletin, 2021, 66, 433-440.	9.0	6
236	Formation and Activity Enhancement of Surface Hydrides by the Metal–Oxide Interface. Advanced Materials Interfaces, 2021, 8, 2002169.	3.7	6
237	The distribution of oxide species in the Csâ^•O activation layer on InP(100) negative electron affinity photocathodes. Journal of Applied Physics, 2007, 102, 074909.	2.5	5
238	Carbon Deposits and Pt/YSZ Overpotentials In CO/CO2 Solid Oxide Electrochemical Cells. ECS Transactions, 2013, 57, 3119-3126.	0.5	5
239	Facile NOx interconversion over preoxidized Ag(111). Surface Science, 2013, 617, 167-174.	1.9	5
240	(Invited) Measurement of the Energy-Band Relations of Stabilized Si Photoanodes Using Operando Ambient Pressure X-ray Photoelectron Spectroscopy. ECS Transactions, 2015, 66, 105-113.	0.5	5
241	<i>In Situ</i> Electronic Structure Study of Epitaxial Niobium Thin Films by Angle-Resolved Photoemission Spectroscopy. Chinese Physics Letters, 2017, 34, 077402.	3.3	5
242	"Pop-On and Pop-Off―Surface Chemistry of Alanine on Ni{111} under Elevated Hydrogen Pressures. Journal of Physical Chemistry C, 2018, 122, 7720-7730.	3.1	5
243	Silicon-assisted growth of hexagonal boron nitride to improve oxidation resistance of germanium. 2D Materials, 2021, 8, 035041.	4.4	5
244	A Composite Velocity Map Imaging Spectrometer for Ions and 1 keV Electrons at the Shanghai Soft X-ray Free-Electron Laser. Applied Sciences (Switzerland), 2021, 11, 10272.	2.5	5
245	Effect of water treatment on transparent semiconductor InZnSnO thin films. Current Applied Physics, 2011, 11, 513-516.	2.4	4
246	Metal insulator transition characteristics of macro-size single domain VO ₂ crystals. Phase Transitions, 2013, 86, 941-946.	1.3	4
247	(Invited) Investigation of the Si/TiO ₂ /Electrolyte Interface Using Operando Tender X-ray Photoelectron Spectroscopy. ECS Transactions, 2015, 66, 97-103.	0.5	4
248	Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors. Journal Physics D: Applied Physics, 2017, 50, 025102.	2.8	4
249	Electronic structure and spatial inhomogeneity of iron-based superconductor FeS. Chinese Physics B, 2020, 29, 047401.	1.4	4
250	Synthesis, characterization and growth mechanism of carbon nanopears. Chemical Physics, 2020, 535, 110780.	1.9	4
251	Tuning the electronic structure of tungsten oxide for enhanced hydrogen evolution reaction in alkaline electrolyte. ChemElectroChem, 0, , .	3.4	4
252	Ambient-Pressure X-ray Photoelectron Spectroscopy to Characterize the Solid/Liquid Interface: Probing the Electrochemical Double Layer. Synchrotron Radiation News, 2017, 30, 38-40.	0.8	3

#	Article	IF	CITATIONS
253	Self-feedback autocatalysis in free radical triggered photosynthesis of N-doped graphene quantum dots. Synthetic Metals, 2021, 271, 116643.	3.9	3
254	Development of basic theory and application of cryogenic X-ray spectrometer in light sources and X-ray satellite. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 180702.	0.5	3
255	In operando x-ray photoelectron spectroscopy studies of H ₂ oxidation and H ₂ O electrolysis on gadolinia-doped ceria electrodes. JPhys Energy, 2021, 3, 014004.	5.3	3
256	Interface modification of TiO2 electron transport layer with PbCl2 for perovskiote solar cells with carbon electrode. Tsinghua Science and Technology, 2022, 27, 741-750.	6.1	3
257	Dynamic chemical processes on ZnO surfaces tuned by physisorption under ambient conditions. Journal of Energy Chemistry, 2022, , .	12.9	3
258	Visualizing the Anomalous Catalysis in Two-Dimensional Confined Space. Nano Letters, 2022, 22, 4661-4668.	9.1	3
259	APXPS of Solid/Liquid Interfaces. ACS Symposium Series, 0, , 67-92.	0.5	3
260	Transition edge sensor-based detector: from X-ray to \$\$gamma\$\$-ray. Nuclear Science and Techniques/Hewuli, 2022, 33, .	3.4	3
261	The Development of Ambient Pressure X-Ray Photoelectron Spectroscopy and Its Application to Surface Science. , 2014, , 197-229.		2
262	Stacking driven Raman spectra change of carbon based 2D semiconductor C3N. Chinese Chemical Letters, 2022, 33, 2600-2604.	9.0	2
263	Observation of Potential-Induced Hydration on the Surface of Ceramic Proton Conductors Using <i>In Situ</i> Near-Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 2928-2933.	4.6	2
264	Selektivitäskontrolle in elektrokatalytischen Oxidationsreaktionen durch Ionische Flüssigkeiten. Angewandte Chemie, 2022, 134, .	2.0	2
265	Beam-Induced Effects on Platinum Oxidation during Ambient-Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 5677-5682.	4.6	2
266	Sharp interface of undoped Ge/SiGe quantum well grown by ultrahigh vacuum chemical vapor deposition. Applied Physics Letters, 2022, 121, .	3.3	2
267	The dependence of the oxidation enhancement of InP(100) surface on the coverage of the adsorbed Cs. Journal of Applied Physics, 2010, 107, 124904.	2.5	1
268	In Situ Spectroscopic Measurements of Local Potentials and Electrochemically Active Regions on Operating Solid Oxide Cells. ECS Transactions, 2010, 33, 19-24.	0.5	1
269	Modulation of Carrier Type in Nanocrystal-in-Matrix Composites by Interfacial Doping. Chemistry of Materials, 2018, 30, 2544-2549.	6.7	1
270	Study on data processing for x-ray spectrometer based on microcalorimeter. , 2022, , .		1

#	Article	IF	CITATIONS
271	Subpicosecond jitter in picosecond electron bunches. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 196.	1.6	0
272	Reply to "Taoism (Daoism) and â€~Chinese Purple': a note on some historical issues― Journal of Archaeological Science, 2008, 35, 2077-2078.	2.4	0
273	Photon Science at the ALS for Sustainable Energy. Synchrotron Radiation News, 2010, 23, 8-15.	0.8	0
274	In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Epitaxial Strontium Substituted Lanthanum Cobalt Oxides Near Operating Conditions Under Applied Potentials. ECS Meeting Abstracts, 2012, , .	0.0	0
275	Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells. Microscopy and Microanalysis, 2021, 27, 1566-1569.	0.4	0
276	Assessing the Activity Trend of Metal Nitride Catalysts for Ammonia Synthesis Based on Theory of Chemical Potential Kinetics. ChemistrySelect, 2022, 7, .	1.5	0
277	Signatures of Spin–Orbit Coupling and Charge Localization in CrIr ₂ Sn ₁₀ : A	3.1	Ο