Scott Pitnick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6689574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Drosophila</i> female reproductive glands contribute to mating plug composition and the timing of sperm ejection. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212213.	1.2	10
2	The life history of <i>Drosophila</i> sperm involves molecular continuity between male and female reproductive tracts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119899119.	3.3	24
3	Drosophila oocyte proteome composition covaries with female mating status. Scientific Reports, 2021, 11, 3142.	1.6	12
4	Pronounced Postmating Response in the Drosophila Female Reproductive Tract Fluid Proteome. Molecular and Cellular Proteomics, 2021, 20, 100156.	2.5	12
5	<i>Drosophila</i> female reproductive tract gene expression reveals coordinated mating responses and rapidly evolving tissue-specific genes. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	25
6	Sperm Cyst "Looping― A Developmental Novelty Enabling Extreme Male Ornament Evolution. Cells, 2021, 10, 2762.	1.8	3
7	Postâ€ejaculatory modifications to sperm (PEMS). Biological Reviews, 2020, 95, 365-392.	4.7	50
8	How female × male and male × male interactions influence competitive fertilization in <i>Drosophila melanogaster</i> . Evolution Letters, 2020, 4, 416-429.	1.6	34
9	Quantitative proteomics reveals rapid divergence in the postmating response of female reproductive tracts among sibling species. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201030.	1.2	15
10	Sperm form and function: what do we know about the role of sexual selection?. Reproduction, 2018, 155, R229-R243.	1.1	92
11	Interrelations of global macroecological patterns in wing and thorax size, sexual size dimorphism, and range size of the Drosophilidae. Ecography, 2018, 41, 1707-1717.	2.1	25
12	Size-dependent ejaculation strategies and reproductive success in the yellow dung fly, Scathophaga stercoraria. Animal Behaviour, 2017, 127, 281-287.	0.8	4
13	How sexual selection can drive the evolution of costly sperm ornamentation. Nature, 2016, 533, 535-538.	13.7	150
14	Stepping off the pasture: evidence of widespread alternative male mating tactics in the yellow dung fly. Behaviour, 2016, 153, 143-157.	0.4	2
15	Resolving mechanisms of short-term competitive fertilization success in the red flour beetle. Journal of Insect Physiology, 2016, 93-94, 1-10.	0.9	13
16	Extreme ecology and mating system: discriminating among direct benefits models in red flour beetles. Behavioral Ecology, 2016, 27, 575-583.	1.0	12
17	Proteomics of reproductive systems: Towards a molecular understanding of postmating, prezygotic reproductive barriers. Journal of Proteomics, 2016, 135, 26-37.	1.2	36
18	Causes of Discordance between Allometries at and above Species Level: An Example with Aquatic Beetles. American Naturalist, 2015, 186, 176-186.	1.0	11

SCOTT PITNICK

#	Article	IF	CITATIONS
19	Alternative mating tactics in the yellow dung fly: resolving mechanisms of small-male advantage off pasture. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132164.	1.2	12
20	No inbreeding depression in sperm storage ability or offspring viability in Drosophila melanogaster females. Journal of Insect Physiology, 2014, 60, 1-6.	0.9	3
21	Brotherly love benefits females. Nature, 2014, 505, 626-627.	13.7	4
22	Postcopulatory Sexual Selection Generates Speciation Phenotypes in Drosophila. Current Biology, 2013, 23, 1853-1862.	1.8	99
23	An Analytical Framework for Estimating Fertilization Bias and the Fertilization Set from Multiple Sperm-Storage Organs. American Naturalist, 2013, 182, 552-561.	1.0	49
24	RAPID DIVERSIFICATION OF SPERM PRECEDENCE TRAITS AND PROCESSES AMONG THREE SIBLING <i>DROSOPHILA</i> SPECIES. Evolution; International Journal of Organic Evolution, 2013, 67, 2348-2362.	1.1	78
25	Opening a window onto sperm competition. Molecular Reproduction and Development, 2013, 80, 79-79.	1.0	1
26	Female mediation of competitive fertilization success in <i>Drosophila melanogaster</i> . Proceedings of the United States of America, 2013, 110, 10693-10698.	3.3	108
27	Inbreeding reveals mode of past selection on male reproductive characters in <i><scp>D</scp>rosophila melanogaster</i> . Ecology and Evolution, 2013, 3, 2089-2102.	0.8	23
28	Female reproductive tract form drives the evolution of complex sperm morphology. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4538-4543.	3.3	111
29	How Multivariate Ejaculate Traits Determine Competitive Fertilization Success in Drosophila melanogaster. Current Biology, 2012, 22, 1667-1672.	1.8	122
30	CONVERGENCE, RECURRENCE AND DIVERSIFICATION OF COMPLEX SPERM TRAITS IN DIVING BEETLES (DYTISCIDAE). Evolution; International Journal of Organic Evolution, 2012, 66, 1650-1661.	1.1	44
31	Evolution of intra-ejaculate sperm interactions: do sperm cooperate?. Biological Reviews, 2011, 86, 249-270.	4.7	101
32	NO EVIDENCE FOR POSTCOPULATORY INBREEDING AVOIDANCE IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2011, 65, 2699-2705.	1.1	32
33	Resolving variation in the reproductive tradeoff between sperm size and number. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5325-5330.	3.3	160
34	Resolving Mechanisms of Competitive Fertilization Success in <i>Drosophila melanogaster</i> . Science, 2010, 328, 354-357.	6.0	316
35	Sperm length is not influenced by haploid gene expression in the flies <i>Drosophila melanogaster</i> and <i>Scathophaga stercoraria</i> . Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4029-4034.	1.2	13
36	Size-dependent alternative male mating tactics in the yellow dung fly, Scathophaga stercoraria. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3229-3237.	1.2	15

SCOTT PITNICK

#	Article	IF	CITATIONS
37	Sperm morphological diversity. , 2009, , 69-149.		244
38	Ejaculate–female and sperm–female interactions. , 2009, , 247-304.		115
39	Complex interactions with females and rival males limit the evolution of sperm offence and defence. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1779-1788.	1.2	70
40	Adaptive modulation of sperm production rate in Drosophila bifurca , a species with giant sperm. Biology Letters, 2007, 3, 517-519.	1.0	36
41	Influence of developmental environment on male- and female-mediated sperm precedence in Drosophila melanogaster. Journal of Evolutionary Biology, 2007, 20, 381-391.	0.8	87
42	Mating system and brain size in bats. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 719-724.	1.2	151
43	MECHANISMS UNDERLYING THE SPERM QUALITY ADVANTAGE IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2006, 60, 2064-2080.	1.1	88
44	Intensity of sexual selection along the anisogamy–isogamy continuum. Nature, 2006, 441, 742-745.	13.7	108
45	MECHANISMS UNDERLYING THE SPERM QUALITY ADVANTAGE IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2006, 60, 2064.	1.1	2
46	Mechanisms underlying the sperm quality advantage in Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 2006, 60, 2064-80.	1.1	32
47	NO EVIDENCE THAT POLYANDRY BENEFITS FEMALES IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2004, 58, 1242.	1.1	4
48	NO EVIDENCE THAT POLYANDRY BENEFITS FEMALES IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2004, 58, 1242-1250.	1.1	57
49	Do queens select sperm?. Trends in Ecology and Evolution, 2003, 18, 107.	4.2	5
50	Quantitative genetic analysis of among-population variation in sperm and female sperm-storage organ length in Drosophila mojavensis. Genetical Research, 2003, 81, 213-220.	0.3	24
51	Ejaculate-female coevolution inDrosophila mojavensis. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1507-1512.	1.2	122
52	Harm to females increases with male body size inDrosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1821-1828.	1.2	198
53	Sperm-Female Coevolution in Drosophila. Science, 2002, 298, 1230-1233.	6.0	419
54	Quantitative genetics of seminal receptacle length in Drosophila melanogaster. Heredity, 2001, 87, 25-32.	1.2	16

SCOTT PITNICK

#	Article	IF	CITATIONS
55	Evolution of female remating behaviour following experimental removal of sexual selection. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 557-563.	1.2	87
56	Correlated response in reproductive and life history traits to selection on testis length in Drosophila hydei. Heredity, 2000, 84, 416-426.	1.2	47
57	CRITERIA FOR DEMONSTRATING FEMALE SPERM CHOICE. Evolution; International Journal of Organic Evolution, 2000, 54, 1052-1056.	1.1	106
58	Sperm competition: Defining the rules of engagement. Current Biology, 1999, 9, R787-R790.	1.8	12
59	Evolution of Multiple Kinds of Female Sperm-Storage Organs in Drosophila. Evolution; International Journal of Organic Evolution, 1999, 53, 1804.	1.1	142
60	EVOLUTION OF MULTIPLE KINDS OF FEMALE SPERM TORAGE ORGANS IN <i>DROSOPHILA</i> . Evolution; International Journal of Organic Evolution, 1999, 53, 1804-1822.	1.1	280
61	PHYLOGENETIC EXAMINATION OF FEMALE INCORPORATION OF EJACULATE IN <i>DROSOPHILA</i> . Evolution; International Journal of Organic Evolution, 1997, 51, 833-845.	1.1	78
62	Phylogenetic Examination of Female Incorporation of Ejaculate in Drosophila. Evolution; International Journal of Organic Evolution, 1997, 51, 833.	1.1	30
63	Sperm caucus. Trends in Ecology and Evolution, 1996, 11, 148-151.	4.2	11
64	Investment in Testes and the Cost of Making Long Sperm in Drosophila. American Naturalist, 1996, 148, 57-80.	1.0	233
65	Sexual selection and a secondary sexual character in twoDrosophilaspecies. Animal Behaviour, 1996, 52, 759-766.	0.8	77
66	Molecular systematics of theDrosophila hydei subgroup as inferred from mitochondrial DNA sequences. Journal of Molecular Evolution, 1996, 43, 281-286.	0.8	17
67	The ins and outs of fertilization. Nature, 1996, 379, 405-406.	13.7	81
68	Molecular Systematics of the Drosophila hydei Subgroup as Inferred from Mitochondrial DNA Sequences. Journal of Molecular Evolution, 1996, 43, 281-286.	0.8	1
69	How long is a giant sperm?. Nature, 1995, 375, 109-109.	13.7	164
70	Male Gametic Strategies: Sperm Size, Testes Size, and the Allocation of Ejaculate Among Successive Mates by the Sperm-Limited Fly Drosophila pachea and Its Relatives. American Naturalist, 1994, 143, 785-819.	1.0	246
71	New Species of Cactus-Breeding Drosophila (Diptera: Drosophilidae) in the Nannoptera Species Group. Annals of the Entomological Society of America, 1994, 87, 307-310.	1.3	18
72	Operational sex ratios and sperm limitation in populations of Drosophila pachea. Behavioral Ecology and Sociobiology, 1993, 33, 383.	0.6	82

#	Article	IF	CITATIONS
73	Male size influences mate fecundity and remating interval in Drosophila melanogaster. Animal Behaviour, 1991, 41, 735-745.	0.8	147
74	TRANSFER OF EJACULATE AND INCORPORATION OF MALEâ€DERIVED SUBSTANCES BY FEMALES IN THE NANNOPTERA SPECIES GROUP (DIPTERA: DROSOPHILIDAE). Evolution; International Journal of Organic Evolution, 1991, 45, 774-780.	1.1	47
75	Transfer of Ejaculate and Incorporation of Male-Derived Substances by Females in the Nannoptera Species Group (Diptera: Drosophilidae). Evolution; International Journal of Organic Evolution, 1991, 45, 774.	1.1	14