
Tessa Crompton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6689456/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cbfa1, a Candidate Gene for Cleidocranial Dysplasia Syndrome, Is Essential for Osteoblast Differentiation and Bone Development. Cell, 1997, 89, 765-771.	28.9	2,620
2	The MAP Kinase Pathway Controls Differentiation from Double-Negative to Double-Positive Thymocyte. Cell, 1996, 86, 243-251.	28.9	205
3	CD3+CD4â^'CD8â^' (double negative) T cells: Saviours or villains of the immune response?. Biochemical Pharmacology, 2011, 82, 333-340.	4.4	155
4	Hedgehog Signaling Regulates Differentiation from Double-Negative to Double-Positive Thymocyte. Immunity, 2000, 13, 187-197.	14.3	152
5	Sonic hedgehog signalling in T-cell development and activation. Nature Reviews Immunology, 2007, 7, 726-735.	22.7	136
6	Bone Morphogenetic Protein 2/4 Signaling Regulates Early Thymocyte Differentiation. Journal of Immunology, 2002, 169, 5496-5504.	0.8	119
7	Thymus transplantation for complete DiGeorge syndrome: European experience. Journal of Allergy and Clinical Immunology, 2017, 140, 1660-1670.e16.	2.9	108
8	Intrathymic δ Selection Events in Î ³ δ Cell Development. Immunity, 1997, 7, 83-95.	14.3	100
9	Raf regulates positive selection. European Journal of Immunology, 1996, 26, 2350-2355.	2.9	90
10	The IFITM protein family in adaptive immunity. Immunology, 2020, 159, 365-372.	4.4	85
11	Tissue-Derived Hedgehog Proteins Modulate Th Differentiation and Disease. Journal of Immunology, 2013, 190, 2641-2649.	0.8	84
12	Reduced Thymocyte Development in Sonic Hedgehog Knockout Embryos. Journal of Immunology, 2004, 172, 2296-2306.	0.8	83
13	A malaria scavenger receptor-like protein essential for parasite development. Molecular Microbiology, 2002, 45, 1473-1484.	2.5	79
14	Activation of the Hedgehog signaling pathway in T-lineage cells inhibits TCR repertoire selection in the thymus and peripheral T-cell activation. Blood, 2007, 109, 3757-3766.	1.4	78
15	Sonic Hedgehog Is Produced by Follicular Dendritic Cells and Protects Germinal Center B Cells from Apoptosis. Journal of Immunology, 2005, 174, 1456-1461.	0.8	71
16	The role of morphogens in T-cell development. Trends in Immunology, 2003, 24, 197-206.	6.8	63
17	A timer for analyzing temporally dynamic changes in transcription during differentiation in vivo. Journal of Cell Biology, 2018, 217, 2931-2950.	5.2	63
18	Expression and Function of the Eph A Receptors and Their Ligands Ephrins A in the Rat Thymus. Journal of Immunology, 2002, 169, 177-184.	0.8	58

TESSA CROMPTON

#	Article	IF	CITATIONS
19	Expression of Hedgehog Proteins in the Human Thymus. Journal of Histochemistry and Cytochemistry, 2003, 51, 1557-1566.	2.5	56
20	Sonic Hedgehog Regulates Early Human Thymocyte Differentiation by Counteracting the IL-7-Induced Development of CD34+ Precursor Cells. Journal of Immunology, 2004, 173, 5046-5053.	0.8	53
21	The transcription factor Gli3 regulates differentiation of fetal CD4–CD8– double-negative thymocytes. Blood, 2005, 106, 1296-1304.	1.4	53
22	Indian hedgehog (Ihh) both promotes and restricts thymocyte differentiation. Blood, 2009, 113, 2217-2228.	1.4	51
23	Double-negative thymocyte subsets in CD3′ chain-deficient mice: Absence of HSA+CD44â^'CD25â^' cells. European Journal of Immunology, 1994, 24, 1903-1907.	2.9	50
24	A transgenic T cell receptor restores thymocyte differentiation in interleukin-7 receptor \hat{I}_{\pm} chain-deficient mice. European Journal of Immunology, 1997, 27, 100-104.	2.9	48
25	Distinct roles of the interleukin-7 receptor α chain in fetal and adult thymocyte development revealed by analysis of interleukin-7 receptor α-deficient mice. European Journal of Immunology, 1998, 28, 1859-1866.	2.9	48
26	Propidium iodide staining correlates with the extent of DNA degradation in isolated nuclei. Biochemical and Biophysical Research Communications, 1992, 183, 532-537.	2.1	47
27	Sonic hedgehog negatively regulates pre-TCR–induced differentiation by a Gli2-dependent mechanism. Blood, 2009, 113, 5144-5156.	1.4	47
28	Non-redundant role for the transcription factor Gli1 at multiple stages of thymocyte development. Cell Cycle, 2010, 9, 4144-4152.	2.6	44
29	The transcriptional activator Gli2 modulates T-cell receptor signalling through attenuation of AP-1 and NFIºB activity. Journal of Cell Science, 2015, 128, 2085-2095.	2.0	44
30	Repression of Hedgehog signal transduction in T-lineage cells increases TCR-induced activation and proliferation. Cell Cycle, 2008, 7, 904-908.	2.6	43
31	The Gli3 Transcription Factor Expressed in the Thymus Stroma Controls Thymocyte Negative Selection Via Hedgehog-Dependent and -Independent Mechanisms. Journal of Immunology, 2009, 183, 3023-3032.	0.8	43
32	A temporally dynamic <i>Foxp3</i> autoregulatory transcriptional circuit controls the effector Treg programme. EMBO Journal, 2018, 37, .	7.8	38
33	IFITM proteins drive type 2 T helper cell differentiation and exacerbate allergic airway inflammation. European Journal of Immunology, 2019, 49, 66-78.	2.9	38
34	Regulation of murine normal and stress-induced erythropoiesis by Desert Hedgehog. Blood, 2012, 119, 4741-4751.	1.4	37
35	Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. Journal of Clinical Investigation, 2019, 129, 3153-3170.	8.2	37
36	IL3-Dependent Cells Die by Apoptosis on Removal of their Growth Factor. Growth Factors, 1991, 4, 109-116.	1.7	36

TESSA CROMPTON

#	Article	IF	CITATIONS
37	Splenomegaly and Modified Erythropoiesis in KLF13–/– Mice. Journal of Biological Chemistry, 2008, 283, 11897-11904.	3.4	36
38	A Novel Role for Hedgehog in T-Cell Receptor Signaling: Implications for Development and Immunity. Cell Cycle, 2007, 6, 2138-2142.	2.6	34
39	Sonic Hedgehog regulates thymic epithelial cell differentiation. Journal of Autoimmunity, 2016, 68, 86-97.	6.5	32
40	Frontline Science: Shh production and Gli signaling is activated in vivo in lung, enhancing the Th2 response during a murine model of allergic asthma. Journal of Leukocyte Biology, 2017, 102, 965-976.	3.3	28
41	KLF13 influences multiple stages of both B and T cell development. Cell Cycle, 2008, 7, 2047-2055.	2.6	27
42	Peripheral clonal deletion of superantigen-reactive T cells is enhanced by cortisone. European Journal of Immunology, 1993, 23, 578-581.	2.9	26
43	Direct BMP2/4 signaling through BMP receptor IA regulates fetal thymocyte progenitor homeostasis and differentiation to CD4+CD8+ double-positive cell. Cell Cycle, 2014, 13, 324-333.	2.6	25
44	Role of Hedgehog signalling at the transition from doubleâ€positive to singleâ€positive thymocyte. European Journal of Immunology, 2012, 42, 489-499.	2.9	24
45	Diacylglycerol kinase alpha activity promotes survival of CD4+ 8+ double positive cells during thymocyte development. Immunology, 2002, 105, 391-398.	4.4	21
46	In the fetal thymus, Gli3 in thymic epithelial cells promotes thymocyte positive selection and differentiation by repression of Shh. Development (Cambridge), 2018, 145, .	2.5	21
47	A cortisone sensitive CD3low subset of CD4+Ce8- thymocytes represents an intermediate stage in intrathymic repertoire selection. International Immunology, 1992, 4, 153-161.	4.0	20
48	A genome wide transcriptional model of the complex response to pre-TCR signalling during thymocyte differentiation. Oncotarget, 2015, 6, 28646-28660.	1.8	20
49	The transcription factor Gli3 promotes B cell development in fetal liver through repression of Shh. Journal of Experimental Medicine, 2017, 214, 2041-2058.	8.5	20
50	Role of endogenous Annexin-A1 in the regulation of thymocyte positive and negative selection. Cell Cycle, 2010, 9, 785-794.	2.6	19
51	Hedgehog signaling promotes TH2 differentiation in naive human CD4 T cells. Journal of Allergy and Clinical Immunology, 2019, 144, 1419-1423.e1.	2.9	19
52	The kinesin motor protein Kif7 is required for T-cell development and normal MHC expression on thymic epithelial cells (TEC) in the thymus. Oncotarget, 2017, 8, 24163-24176.	1.8	19
53	The transcriptional repressor Bcl6 promotes pre-TCR induced differentiation to CD4+CD8+ thymocyte and attenuates Notch1 activation. Development (Cambridge), 2020, 147, .	2.5	18
54	β-Selection: Abundance of TCRβ–/γδ– CD44–CD25– (DN4) cells in the foetal thymus. European Journa Immunology, 2007, 37, 487-500.	l of 2.9	17

TESSA CROMPTON

#	Article	IF	CITATIONS
55	Foxa1 and Foxa2 in thymic epithelial cells (TEC) regulate medullary TEC and regulatory T-cell maturation. Journal of Autoimmunity, 2018, 93, 131-138.	6.5	16
56	Phosphorylation of NTRK1 at Y674/Y675 induced by TP53-dependent repression of PTPN6 expression: A potential novel prognostic marker for breast cancer. Modern Pathology, 2014, 27, 361-374.	5.5	14
57	Sonic Hedgehog Is a Determinant of γδT-Cell Differentiation in the Thymus. Frontiers in Immunology, 2019, 10, 1629.	4.8	13
58	Systemic Pharmacological Smoothened Inhibition Reduces Lung T-Cell Infiltration and Ameliorates Th2 Inflammation in a Mouse Model of Allergic Airway Disease. Frontiers in Immunology, 2021, 12, 737245.	4.8	13
59	Sonic Hedgehog signalling in the regulation of barrier tissue homeostasis and inflammation. FEBS Journal, 2022, 289, 8050-8061.	4.7	13
60	The pioneer transcription factors Foxa1 and Foxa2 regulate alternative RNA splicing during thymocyte positive selection. Development (Cambridge), 2021, 148, .	2.5	11
61	Role of endogenous annexin-A1 in the regulation of thymocyte positive and negative selection. Cell Cycle, 2010, 9, 784-93.	2.6	11
62	Hedgehog Signalling in the Embryonic Mouse Thymus. Journal of Developmental Biology, 2016, 4, 22.	1.7	10
63	Transplanted human thymus slices induce and support Tâ€cell development in mice after cryopreservation. European Journal of Immunology, 2018, 48, 716-719.	2.9	10
64	Selective silencing of full-length CD80 but not IgV-CD80 leads to impaired clonal deletion of self-reactive T cells and altered regulation of immune responses. European Journal of Immunology, 2001, 31, 118-127.	2.9	7
65	T-Cell Reconstitution after Thymus Xenotransplantation Induces Hair Depigmentation and Loss. Journal of Investigative Dermatology, 2013, 133, 1221-1230.	0.7	7
66	Analysis of the inflammatory response in HY-TCR transgenic mice highlights the pathogenic potential of CD4â^'CD8â^'T cells. Autoimmunity, 2010, 43, 672-681.	2.6	6
67	T cell phenotype in paediatric heart transplant recipients. Pediatric Transplantation, 2021, 25, e13930.	1.0	6
68	Dysregulated gene expression in oocysts of Plasmodium berghei LAP mutants. Molecular and Biochemical Parasitology, 2019, 229, 1-5.	1.1	4
69	Gli2, hedgehog and TCR signalling. Oncotarget, 2015, 6, 24592-24593.	1.8	4
70	Peptide-Specific, TCR-α–Driven, Coreceptor-Independent Negative Selection in TCR α-Chain Transgenic Mice. Journal of Immunology, 2010, 184, 650-657.	0.8	3
71	CD4/CD8 lineage commitment in T cell receptor transgenic mice: evidence for precommitment of CD4+ CD8+ thymocytes. Seminars in Immunology, 1994, 6, 249-256.	5.6	2
72	Repression of CD2 Gene Expression Is Mediated by an AP-2 Related Factor. Biochemical and Biophysical Research Communications, 2001, 281, 409-415.	2.1	2

0

#	Article	IF	CITATIONS
73	Shh, BMP4 and IL-7 in the maintenance and differentiation of human CD34+ progenitor cells in the thymus. Cell Cycle, 2009, 8, 3809-3815.	2.6	0

74 Hedgehog Signalling in T Lymphocyte Development. , 2006, , 107-115.