Jonathan D Bakker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6689402/publications.pdf

Version: 2024-02-01

110 papers 7,459 citations

36 h-index 81 g-index

114 all docs

114 docs citations

times ranked

114

9465 citing authors

#	Article	IF	CITATIONS
1	Planting, seeding, and sediment impact restoration success following dam removal. Restoration Ecology, 2022, 30, e13506.	1.4	10
2	Nutrients and herbivores impact grassland stability across spatial scales through different pathways. Global Change Biology, 2022, 28, 2678-2688.	4.2	18
3	Cover and density of southwestern ponderosa pine understory plants in permanent chart quadrats (2002â€2020). Ecology, 2022, , e3661.	1.5	4
4	Nutrient identity modifies the destabilising effects of eutrophication in grasslands. Ecology Letters, 2022, 25, 754-765.	3.0	17
5	Is the bryophyte soil diaspore bank buffered against nutrient enrichment and grazing exclusion?. Plant and Soil, 2022, 477, 487-499.	1.8	O
6	Impacts of nutrient addition on soil carbon and nitrogen stoichiometry and stability in globally-distributed grasslands. Biogeochemistry, 2022, 159, 353-370.	1.7	5
7	Preference, performance, and chemical defense in an endangered butterfly using novel and ancestral host plants. Scientific Reports, 2021, 11, 992.	1.6	8
8	Applying a high-precision tracking system to distinguish the spatiotemporal patterns of animal movement in grassland ecology. Biological Conservation, 2021, 255, 109016.	1.9	8
9	Grazing regime alters plant community structure via patchâ€scale diversity in semiarid grasslands. Ecosphere, 2021, 12, e03547.	1.0	13
10	Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecology Letters, 2021, 24, 2100-2112.	3.0	13
11	Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
12	Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology, 2021, 102, e03504.	1.5	14
13	Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecology and Evolution, 2021, 11, 17744-17761.	0.8	8
14	The Fire and Tree Mortality Database, for empirical modeling of individual tree mortality after fire. Scientific Data, 2020, 7, 194.	2.4	13
15	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, 11 , 5375.	5.8	75
16	Long-Term Effects of Fuels Treatments, Overstory Structure, and Wildfire on Tree Regeneration in Dry Forests of Central Washington. Forests, 2020, 11, 888.	0.9	2
17	Dominant native and nonâ€native graminoids differ in key leaf traits irrespective of nutrient availability. Global Ecology and Biogeography, 2020, 29, 1126-1138.	2.7	11
18	Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26, 2060-2071.	4.2	43

#	Article	IF	CITATIONS
19	Methods for tracking sagebrushâ€steppe community trajectories and quantifying resilience in relation to disturbance and restoration. Restoration Ecology, 2020, 28, 115-126.	1.4	7
20	Climate and local environment structure asynchrony and the stability of primary production in grasslands. Global Ecology and Biogeography, 2020, 29, 1177-1188.	2.7	41
21	Spatial Sampling Grain Shapes Conclusions about Community Structure and Dynamics. Natural Areas Journal, 2020, 40, 51.	0.2	2
22	Evidence of a historical frequent, low-severity fire regime in western Washington, USA. Canadian Journal of Forest Research, 2019, 49, 575-585.	0.8	6
23	Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally Distributed Grasslands. Ecosystems, 2019, 22, 1466-1477.	1.6	34
24	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology and Evolution, 2019, 3, 400-406.	3.4	97
25	Increasing germination of 2 upland sedges, <i>Carex inops</i> ssp. <i>inops</i> and <i>Carex tumulicola</i> . Native Plants Journal, 2019, 20, 253-265.	0.0	0
26	Benefits of thinning and burning for understory diversity vary with spatial scale and time since treatment. Forest Ecology and Management, 2018, 419-420, 58-78.	1.4	21
27	Social perspectives on the use of reference conditions in restoration of fireâ€adapted forest landscapes. Restoration Ecology, 2018, 26, 987-996.	1.4	10
28	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	3.4	172
29	Stagedâ€scale restoration: Refining adaptive management to improve restoration effectiveness. Journal of Applied Ecology, 2018, 55, 1126-1132.	1.9	13
30	Hemiparasites can transmit indirect effects from their host plants to herbivores. Ecology, 2018, 99, 399-410.	1.5	7
31	Evaluating Seeding Methods and Rates for Prairie Restoration. Natural Areas Journal, 2018, 38, 347-355.	0.2	15
32	Automating analysis of vegetation with computer vision: Cover estimates and classification. Ecology and Evolution, 2018, 8, 6005-6015.	0.8	7
33	Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. Ecology Letters, 2018, 21, 1364-1371.	3.0	38
34	Instarâ€specific effects of host plants on survival of endangered butterfly larvae. Ecological Entomology, 2018, 43, 742-753.	1.1	6
35	The effects of forest restoration on ecosystem carbon in western North America: A systematic review. Forest Ecology and Management, 2018, 429, 625-641.	1.4	23
36	Ectomycorrhizal community composition and structure of a mature red alder (Alnus rubra) stand. Fungal Ecology, 2017, 27, 47-58.	0.7	9

#	Article	IF	CITATIONS
37	Relative importance of abiotic, biotic, and disturbance drivers of plant community structure in the sagebrush steppe. Ecological Applications, 2017, 27, 756-768.	1.8	29
38	Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity. Functional Ecology, 2017, 31, 1839-1846.	1.7	55
39	Wind and salt spray alter tree shape and dry mass density in Casuarina equisetifolia L Trees - Structure and Function, 2017, 31, 15-26.	0.9	7
40	Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program. Environmental Management, 2017, 59, 338-353.	1.2	34
41	Prescribed Fire in Grassland Butterfly Habitat: Targeting Weather and Fuel Conditions to Reduce Soil Temperatures and Burn Severity. Fire Ecology, 2017, 13, 24-41.	1.1	19
42	Grass abundance shapes trait distributions of forbs in an experimental grassland. Journal of Vegetation Science, 2016, 27, 557-567.	1.1	14
43	Climate modifies response of non-native and native species richness to nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150273.	1.8	34
44	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	13.7	355
45	Allometry data and equations for coastal marsh plants. Ecology, 2016, 97, 3554-3554.	1.5	22
46	Intertwined Fates: Opportunities and Challenges in the Linked Recovery of Two Rare Species. Natural Areas Journal, 2016, 36, 207-215.	0.2	11
47	The combined effects of afforestation and grazing on Uruguayan grassland vegetation at multiple spatiotemporal scales. New Forests, 2016, 47, 685-699.	0.7	3
48	Comment on $\hat{a} \in \omega$ Worldwide evidence of a unimodal relationship between productivity and plant species richness $\hat{a} \in \omega$ Science, 2016, 351, 457-457.	6.0	16
49	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	13.7	564
50	Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.	4.7	403
51	Long-term Protection from Heavy Livestock Grazing Affects Ponderosa Pine Understory Composition and Functional Traits. Rangeland Ecology and Management, 2015, 68, 257-265.	1.1	14
52	Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 2015, 96, 1459-1465.	1.5	143
53	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	5.8	143
54	Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 2015, 18, 85-95.	3.0	612

#	Article	IF	Citations
55	Intraspecific Trait Variation Driven by Plasticity and Ontogeny in Hypochaeris radicata. PLoS ONE, 2014, 9, e109870.	1.1	40
56	Natural History's Place in Science and Society. BioScience, 2014, 64, 300-310.	2.2	231
57	Terrestrial Laser Scanning for Vegetation Sampling. Sensors, 2014, 14, 20304-20319.	2.1	17
58	Anthropogenicâ€based regionalâ€scale factors most consistently explain plotâ€level exotic diversity in grasslands. Global Ecology and Biogeography, 2014, 23, 802-810.	2.7	32
59	Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 2014, 508, 521-525.	13.7	409
60	Vegetation dynamics in a novel ecosystem: agroforestry effects on grassland vegetation in Uruguay. Ecosphere, 2014, 5, 1-15.	1.0	11
61	Quantifying and comparing intraspecific functional trait variability: a case study with <i><scp>H</scp>ypochaeris radicata</i> . Functional Ecology, 2014, 28, 258-269.	1.7	33
62	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	13.7	669
63	Ten-Year Periodic Diameter Model for Uneven-Aged Ponderosa Pine Stands in the Southwest Reduces Long-Term Error Propagation. Forest Science, 2014, 60, 1148-1155.	0.5	8
64	Long-term changes in biological soil crust cover and composition. Ecological Processes, 2013, 2, .	1.6	20
65	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	4.2	70
66	Lifeâ€history constraints in grassland plant species: a growthâ€defence tradeâ€off is the norm. Ecology Letters, 2013, 16, 513-521.	3.0	165
67	Role of biotic interactions in regulating conifer invasion of grasslands. Forest Ecology and Management, 2013, 289, 175-182.	1.4	10
68	Loblolly pine germination and establishment in plantations and grasslands of northern Uruguay. Forest Ecology and Management, 2013, 302, 1-6.	1.4	5
69	Controls of biological soil crust cover and composition shift with succession in sagebrush shrub-steppe. Journal of Arid Environments, 2013, 94, 96-104.	1.2	38
70	Outplanting Wyoming Big Sagebrush Following Wildfire: Stock Performance and Economics. Rangeland Ecology and Management, 2013, 66, 657-666.	1.1	28
71	Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World's Grasslands. PLoS ONE, 2013, 8, e54988.	1.1	27
72	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richnessâ€, Science, 2012, 335, 1441-1441.	6.0	30

#	Article	IF	CITATIONS
73	Enhancing Garry Oak Seedling Performance in a Semiarid Environment. Northwest Science, 2012, 86, 300.	0.1	26
74	Spatial and temporal patterns of plant communities near small mountain streams in managed forests. Canadian Journal of Forest Research, 2012, 42, 260-271.	0.8	5
75	Introduction to Restoration Ecology. Restoration Ecology, 2012, 20, 794-795.	1.4	1
76	Trajectories of change in sagebrush steppe vegetation communities in relation to multiple wildfires. Ecological Applications, 2012, 22, 1562-1577.	1.8	110
77	The Future of Restoration and Management of Prairie-Oak Ecosystems in the Pacific Northwest. Northwest Science, 2011, 85, 83-92.	0.1	44
78	Environmental History of a Garry Oak/Douglas-Fir Woodland on Waldron Island, Washington. Northwest Science, 2011, 85, 130-140.	0.1	28
79	Patch dynamics and the development of structural and spatial heterogeneity in Pacific Northwest forests. Canadian Journal of Forest Research, 2011, 41, 2276-2291.	0.8	58
80	Long-Term Effects of Initial Site Treatment on Fescue in a Novel Prairie Ecosystem (Washington). Ecological Restoration, 2011, 29, 14-17.	0.6	3
81	Use of Soil Properties to Determine the Historical Extent of Two Western Washington Prairies. Northwest Science, 2011, 85, 120-129.	0.1	7
82	Landscape context and long-term tree influences shape the dynamics of forest-meadow ecotones in mountain ecosystems. Ecosphere, 2011, 2, art91.	1.0	16
83	Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 2011, 14, 274-281.	3.0	88
84	An Assessment of Introductory Restoration Courses in the United States and Canada. Restoration Ecology, 2011, 19, 572-577.	1.4	7
85	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	6.0	463
86	Carbon Addition as a Technique for Controlling Exotic Species in Pacific Northwest Prairies. Northwest Science, 2011, 85, 247-254.	0.1	10
87	Fire intensity, fire severity and ecosystem response in heathlands: factors affecting the regeneration of ci>Calluna vulgaris (i>. Journal of Applied Ecology, 2010, 47, 356-365.	1.9	58
88	Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data. Canadian Journal of Forest Research, 2010, 40, 774-787.	0.8	95
89	Aerial Arthropod Communities of Native and Invaded Forests, Robinson Crusoe Island, Chile. Environmental Entomology, 2010, 39, 1159-1164.	0.7	5
90	Influences of climate, fire, grazing, and logging on woody species composition along an elevation gradient in the eastern Cascades, Washington. Forest Ecology and Management, 2010, 260, 2204-2213.	1.4	25

#	Article	IF	Citations
91	Effects of Long-Term Livestock Grazing and Habitat on Understory Vegetation. Western North American Naturalist, 2010, 70, 334-344.	0.2	8
92	Comparisons between field- and LiDAR-based measures of stand structural complexity. Canadian Journal of Forest Research, 2010, 40, 761-773.	0.8	140
93	Rethinking Conservation Practice in Light of Climate Change. Ecological Restoration, 2009, 27, 320-329.	0.6	18
94	Restoring plant species diversity and community composition in a ponderosa pine-bunchgrass ecosystem. Plant Ecology, 2008, 197, 139-151.	0.7	46
95	Climatic variability alters the outcome of longâ€ŧerm community assembly. Journal of Ecology, 2008, 96, 346-354.	1.9	70
96	Increasing the utility of Indicator Species Analysis. Journal of Applied Ecology, 2008, 45, 1829-1835.	1.9	95
97	CONTROLS ON VEGETATION STRUCTURE IN SOUTHWESTERN PONDEROSA PINE FORESTS, 1941 AND 2004. Ecology, 2007, 88, 2305-2319.	1.5	43
98	Wage Flexibility and Labour Market Institutions: A Metaâ€Analysis. Journal of Vegetation Science, 2007, 60, 145-163.	1.1	47
99	Herbaceous Vegetation Responses (1992–2004) to Restoration Treatments in a Ponderosa Pine Forest. Rangeland Ecology and Management, 2006, 59, 135-144.	1.1	105
100	Assessing Targets for the Restoration of Herbaceous Vegetation in Ponderosa Pine Forests. Restoration Ecology, 2006, 14, 548-560.	1.4	48
101	Understorey plant community structure in lower montane and subalpine forests, Grand Canyon National Park, USA. Journal of Biogeography, 2005, 32, 2083-2102.	1.4	34
102	A new, proportional method for reconstructing historical tree diameters. Canadian Journal of Forest Research, 2005, 35, 2515-2520.	0.8	56
103	Frozen-stored conifer container stock can be outplanted without thawing. Native Plants Journal, 2005, 6, 267-278.	0.0	3
104	Using ecological restoration to constrain biological invasion. Journal of Applied Ecology, 2004, 41, 1058-1064.	1.9	138
105	Toward reference conditions: wildfire effects on flora in an old-growth ponderosa pine forest. Forest Ecology and Management, 2004, 199, 137-152.	1.4	106
106	SEMIARID OLD-FIELD RESTORATION: IS NEIGHBOR CONTROL NEEDED?. , 2004, 14, 476-484.		39
107	CONTINGENCY OF GRASSLAND RESTORATION ON YEAR, SITE, AND COMPETITION FROM INTRODUCED GRASSES. , 2003, 13, 137-153.		171
108	Planting frozen conifer seedlings: Warming trends and effects on seedling performance. New Forests, 2002, 23, 225-237.	0.7	11

#	Article	lF	CITATIONS
109	Competitive abilities of introduced and native grasses. Plant Ecology, 2001, 157, 119-127.	0.7	80
110	Seeding Blue Grama in Old Crested Wheatgrass Fields in Southwestern Saskatchewan. Journal of Range Management, 1997, 50, 156.	0.3	16