Mohsen Guizani

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6689173/mohsen-guizani-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

971	27,193 citations	72	136
papers		h-index	g-index
1,152	36,234 ext. citations	6.9	8.15
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
971	QMIX Aided Routing in Social-Based Delay-Tolerant Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2022 , 71, 1952-1963	6.8	1
970	Analysis of Beyond 5G Integrated Communication and Ranging Services under Indoor 3D mmWave Stochastic Channels. <i>IEEE Transactions on Industrial Informatics</i> , 2022 , 1-1	11.9	1
969	A Resource-Efficient Online Target Detection System with Autonomous Drone-Assisted IoT. <i>IEEE</i> Internet of Things Journal, 2022 , 1-1	10.7	O
968	Deep Learning-Powered Vessel Trajectory Prediction for Improving Smart Traffic Services in Maritime Internet of Things. <i>IEEE Transactions on Network Science and Engineering</i> , 2022 , 1-1	4.9	29
967	QoS provision for vehicle big data by parallel transmission based on heterogeneous network characteristics prediction. <i>Journal of Parallel and Distributed Computing</i> , 2022 , 163, 83-96	4.4	1
966	Decentralized Renewable Resource Redistribution and Optimization for Beyond 5G Small Cell Base Stations: A Machine Learning Approach. <i>IEEE Systems Journal</i> , 2022 , 1-12	4.3	
965	C-HealthIER: A Cooperative Health Intelligent Emergency Response System for C-ITS. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2022 , 1-11	6.1	O
964	A Privacy-Preserving Multi-Dimensional Range Query Scheme for Edge-Supported Industrial IoT. <i>IEEE Internet of Things Journal</i> , 2022 , 1-1	10.7	0
963	A Game Theoretic Analysis for Power Management and Cost Optimization of Green Base Stations in 5G and Beyond Communication Networks. <i>IEEE Transactions on Network and Service Management</i> , 2022 , 1-1	4.8	O
962	Multi-Agent Deep Reinforcement Learning for Wireless-Powered UAV Networks. <i>IEEE Internet of Things Journal</i> , 2022 , 1-1	10.7	1
961	Industrial digital twins at the nexus of NextG wireless networks and computational intelligence: A survey. <i>Journal of Network and Computer Applications</i> , 2022 , 200, 103309	7.9	3
960	Information fusion for edge intelligence: A survey. <i>Information Fusion</i> , 2022 , 81, 171-186	16.7	6
959	Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security. <i>ACM Transactions on Internet Technology</i> , 2022 , 22, 1-22	3.8	1
958	Epidemic Risk Assessment by a Novel Communication Station Based Method <i>IEEE Transactions on Network Science and Engineering</i> , 2022 , 9, 332-344	4.9	15
957	A Secure Energy Efficient Scheme for Cooperative IoT Networks <i>IEEE Transactions on Communications</i> , 2022 , 1-1	6.9	1
956	RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency IoT systems. <i>IEEE Transactions on Network Science and Engineering</i> , 2022 , 1-1	4.9	2
955	Space-Air-Ground Integrated Network Resource Allocation Based on Service Function Chain. <i>IEEE Transactions on Vehicular Technology</i> , 2022 , 1-1	6.8	O

954	Multi-agent Reinforcement Learning Aided Service Function Chain Deployment for Internet of Things. <i>IEEE Internet of Things Journal</i> , 2022 , 1-1	10.7	O
953	An Improved Federated Learning Algorithm for Privacy-Preserving in Cybertwin-Driven 6G System. <i>IEEE Transactions on Industrial Informatics</i> , 2022 , 1-1	11.9	1
952	Multi-Agent Reinforcement Learning for Network Selection and Resource Allocation in Heterogeneous multi-RAT Networks. <i>IEEE Transactions on Cognitive Communications and Networking</i> , 2022 , 1-1	6.6	1
951	A Comprehensive Survey on the Applications of Blockchain for Securing Vehicular Networks. <i>IEEE Communications Surveys and Tutorials</i> , 2022 , 1-1	37.1	9
950	Slicing-Based Software-Defined Mobile Edge Computing in the Air. <i>IEEE Wireless Communications</i> , 2022 , 29, 119-125	13.4	О
949	Wave Height Prediction Suitable for Maritime Transportation Based on Green Ocean of Things. <i>IEEE Transactions on Artificial Intelligence</i> , 2022 , 1-1	4.7	
948	Multi-Carrier DCSK With Hybrid Index Modulation: A New Perspective on Frequency-Index-Aided Chaotic Communication. <i>IEEE Transactions on Communications</i> , 2022 , 1-1	6.9	3
947	When Federated Learning Meets Game Theory: A Cooperative Framework to secure IIoT Applications on Edge Computing. <i>IEEE Transactions on Industrial Informatics</i> , 2022 , 1-1	11.9	1
946	Artificial Intelligence for 6G Networks: Technology Advancement and Standardization. <i>IEEE Vehicular Technology Magazine</i> , 2022 , 2-11	9.9	O
945	Towards Secure IoT Networks in Healthcare Applications: A Game Theoretic Anti-Jamming Framework. <i>IEEE Internet of Things Journal</i> , 2022 , 1-1	10.7	
944	Employing Intelligent Aerial Data Aggregators for the Internet of Things: Challenges and Solutions. <i>IEEE Internet of Things Magazine</i> , 2022 , 5, 136-141	3.5	1
943	B5G: Predictive Container Auto-Scaling for Cellular Evolved Packet Core. <i>IEEE Access</i> , 2021 , 9, 158204-	158314	
942	Asynchronous Federated Learning-based ECG Analysis for Arrhythmia Detection 2021,		3
941	A Brief Survey and Implementation on Refinement for Intent-Driven Networking. <i>IEEE Network</i> , 2021 , 35, 75-83	11.4	1
940	A Blockchain and Edge-Computing-Based Secure Framework for Government Tender Allocation. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 2409-2418	10.7	8
939	. IEEE Internet of Things Journal, 2021 , 8, 15762-15775	10.7	22
938	Unlocking Unlicensed Band Potential to Enable URLLC in Cloud Robotics for Ubiquitous IoT. <i>IEEE Network</i> , 2021 , 35, 107-113	11.4	1
937	Intelligent Task Offloading and Energy Allocation in the UAV-Aided Mobile Edge-Cloud Continuum. <i>IEEE Network</i> , 2021 , 35, 42-49	11.4	3

936	How Does Social Behavior Affect Your Password?. IEEE Network, 2021, 35, 284-289	11.4	
935	. IEEE Wireless Communications, 2021 , 28, 10-12	13.4	O
934	QoS Aware Uplink Scheduling for M2M Communication in LTE / LTE-A Network: A Game Theoretic Approach. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 1-1	6.8	0
933	Secure and Latency-Aware Digital Twin Assisted Resource Scheduling for 5G Edge Computing-Empowered Distribution Grids. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 1-1	11.9	5
932	Resource Management for Edge Intelligence (EI)-Assisted IoV Using Quantum-Inspired Reinforcement Learning. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	2
931	The Duo of Artificial Intelligence and Big Data for Industry 4.0: Applications, Techniques, Challenges, and Future Research Directions. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	8
930	Transfer Reinforcement Learning aided Distributed Network Slicing Resource Optimization in Industrial IoT. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 1-1	11.9	4
929	Explainable Intelligence-Driven Defense Mechanism against Advanced Persistent Threats: A Joint Edge Game and Al Approach. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2021 , 1-1	3.9	O
928	Edge-assisted Solutions for IoT-based Connected Healthcare Systems: A Literature Review. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	2
927	Multidata-Owner Searchable Encryption Scheme Over Medical Cloud Data With Efficient Access Control. <i>IEEE Systems Journal</i> , 2021 , 1-12	4.3	O
926	Fuzzy Elliptic Curve Cryptography for Authentication in Internet of Things. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	1
925	Stochastic Digital-Twin Service Demand with Edge Response: An Incentive-Based Congestion Control Approach. <i>IEEE Transactions on Mobile Computing</i> , 2021 , 1-1	4.6	2
924	AI-based Intrusion Detection for Intelligence Internet of Vehicles. <i>IEEE Consumer Electronics Magazine</i> , 2021 , 1-1	3.2	O
923	A Multi-Channel Interference based Source Location Privacy Protection Scheme in Underwater Acoustic Sensor Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 1-1	6.8	2
922	Blockchain and Semi-Distributed Learning-Based Secure and Low-Latency Computation Offloading in Space-Air-Ground-Integrated Power IoT. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2021 , 1-1	7.5	1
921	Graph Neural Networks-driven Traffic Forecasting for Connected Internet of Vehicles. <i>IEEE Transactions on Network Science and Engineering</i> , 2021 , 1-1	4.9	27
920	Beamer: Stage-aware Coflow Scheduling to Accelerate Hyper-parameter Tuning in Deep Learning Clusters. <i>IEEE Transactions on Network and Service Management</i> , 2021 , 1-1	4.8	
919	Toward Safer Vehicular Transit: Implementing Deep Learning on Single Channel EEG Systems for Microsleep Detection. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-10	6.1	O

918	Cybertwin-driven Federated Learning based Personalized Service Provision for 6G-V2X. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 1-1	6.8	3
917	A Demand-driven Incremental Deployment Strategy for Edge Computing in IoT network. <i>IEEE Transactions on Network Science and Engineering</i> , 2021 , 1-1	4.9	1
916	When Blockchain Meets Edge Intelligence: Trusted and Security Solutions for Consumers. <i>IEEE Network</i> , 2021 , 1-7	11.4	8
915	On Designing Smart Agents for Service Provisioning in Blockchain-powered Systems. <i>IEEE Transactions on Network Science and Engineering</i> , 2021 , 1-1	4.9	3
914	Dynamic Distributed Multi-Path Aided Load Balancing for Optical Data Center Networks. <i>IEEE Transactions on Network and Service Management</i> , 2021 , 1-1	4.8	7
913	A Hybrid Deep Reinforcement Learning For Autonomous Vehicles Smart-Platooning. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 1-1	6.8	19
912	Profit Maximization of Online Service Function Chain Orchestration in an Inter-Datacenter Elastic Optical Network. <i>IEEE Transactions on Network and Service Management</i> , 2021 , 18, 973-985	4.8	О
911	Blockchain for decentralized multi-drone to combat COVID-19 and future pandemics: Framework and proposed solutions. <i>Transactions on Emerging Telecommunications Technologies</i> , 2021 , 32, e4255	1.9	29
910	Blockchain-based privacy-preserving valet parking for self-driving vehicles. <i>Transactions on Emerging Telecommunications Technologies</i> , 2021 , 32, e4239	1.9	3
909	A Novel Class Noise Detection Method for High-Dimensional Data in Industrial Informatics. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 2181-2190	11.9	9
908	Security and Privacy for Edge Intelligence in 5G and Beyond Networks: Challenges and Solutions. <i>IEEE Wireless Communications</i> , 2021 , 28, 63-69	13.4	8
907	. IEEE Wireless Communications, 2021 , 28, 128-135	13.4	1
906	Joint resource allocation and power control for D2D communication with deep reinforcement learning in MCC. <i>Physical Communication</i> , 2021 , 45, 101262	2.2	8
905	Budgeted Online Selection of Candidate IoT Clients to Participate in Federated Learning. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 5938-5952	10.7	9
904	A Blockchain-Based Storage System With Financial Incentives for Load-balancing. <i>IEEE Transactions on Network Science and Engineering</i> , 2021 , 8, 1178-1188	4.9	3
903	Federated Learning Meets Human Emotions: A Decentralized Framework for Human Computer Interaction for IoT Applications. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 6949-6962	10.7	12
902	Introduction to the Special Section on Artificial Intelligence Security: Adversarial Attack and Defense. <i>IEEE Transactions on Network Science and Engineering</i> , 2021 , 8, 905-907	4.9	1
901	Secure Data Access Control With Fair Accountability in Smart Grid Data Sharing: An Edge Blockchain Approach. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 8632-8643	10.7	7

900	Intelligent and secure edge-enabled computing model for sustainable cities using green internet of things. <i>Sustainable Cities and Society</i> , 2021 , 68, 102779	10.1	11
899	IoT root union: A decentralized name resolving system for IoT based on blockchain. <i>Information Processing and Management</i> , 2021 , 58, 102553	6.3	1
898	SFPAG-R: A Reliable Routing Algorithm Based on Sealed First-Price Auction Games for Industrial Internet of Things Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 70, 5016-5027	6.8	4
897	A sentence-level text adversarial attack algorithm against IIoT based smart grid. <i>Computer Networks</i> , 2021 , 190, 107956	5.4	3
896	An Energy Aware Offloading Scheme for Interdependent Applications in Software-Defined IoV With Fog Computing Architecture. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 22, 38	13 -3 82	3 ⁵
895	Deep Federated Learning for IoT-based Decentralized Healthcare Systems 2021 ,		5
894	Subchannel Assignment and Power Allocation for Time-Varying Fog Radio Access Network With NOMA. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 20, 3685-3697	9.6	3
893	Scalable spectrum database construction mechanisms for efficient wideband spectrum access management. <i>Physical Communication</i> , 2021 , 46, 101318	2.2	1
892	Block6Tel: Blockchain-based Spectrum Allocation Scheme in 6G-envisioned Communications 2021 ,		2
891	Artificial Intelligence (AI)-Empowered Intrusion Detection Architecture for the Internet of Vehicles. <i>IEEE Wireless Communications</i> , 2021 , 28, 144-149	13.4	12
890	Hierarchical Federated Learning for Collaborative IDS in IoT Applications 2021,		2
889	Res6Edge: An Edge-Al Enabled Resource Sharing Scheme for C-V2X Communications towards 6G 2021 ,		5
888	Deep Neural Networks for Securing IoT Enabled Vehicular Ad-Hoc Networks 2021,		3
887	Guest Editorial Special Issue on Green Internet of Things: Challenges and Future Opportunities P art I. <i>IEEE Transactions on Green Communications and Networking</i> , 2021 , 5, 569-573	4	
886	Edge Intelligence for Empowering IoT-Based Healthcare Systems. <i>IEEE Wireless Communications</i> , 2021 , 28, 6-14	13.4	10
885	STAC: a spatio-temporal approximate method in data collection applications. <i>Pervasive and Mobile Computing</i> , 2021 , 73, 101371	3.5	3
884	Spatiotemporal Location Differential Privacy for Sparse Mobile Crowdsensing 2021,		4
883	ONSRA: an Optimal Network Selection and Resource Allocation Framework in multi-RAT Systems 2021 ,		2

882	IoMT and DNN-Enabled Drone-Assisted Covid-19 Screening and Detection Framework for Rural Areas. <i>IEEE Internet of Things Magazine</i> , 2021 , 4, 4-9	3.5	11	
881	Green internet of things using UAVs in B5G networks: A review of applications and strategies. <i>Ad Hoc Networks</i> , 2021 , 117, 102505	4.8	38	
880	Machine-Learning-Aided Optical Fiber Communication System. <i>IEEE Network</i> , 2021 , 35, 136-142	11.4	2	
879	CorrAUC: A Malicious Bot-IoT Traffic Detection Method in IoT Network Using Machine-Learning Techniques. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 3242-3254	10.7	114	
878	ECBCM: A prestige-based edge computing blockchain security consensus model. <i>Transactions on Emerging Telecommunications Technologies</i> , 2021 , 32, e4015	1.9	О	
877	Protecting Your Shopping Preference With Differential Privacy. <i>IEEE Transactions on Mobile Computing</i> , 2021 , 20, 1965-1978	4.6	3	
876	Collaborative Intrusion Detection for VANETs: A Deep Learning-Based Distributed SDN Approach. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 22, 4519-4530	6.1	22	
875	. IEEE Internet of Things Journal, 2021 , 8, 791-801	10.7	20	
874	Adaptive DE Algorithm for Novel Energy Control Framework Based on Edge Computing in IIoT Applications. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 5118-5127	11.9	7	
873	A method of chained recommendation for charging piles in internet of vehicles. <i>Computing</i> (Vienna/New York), 2021 , 103, 231-249	2.2	1	
872	. IEEE Internet of Things Journal, 2021 , 8, 684-694	10.7	12	
871	. IEEE Internet of Things Journal, 2021 , 8, 6454-6468	10.7	3	
870	. IEEE Internet of Things Journal, 2021 , 8, 5476-5497	10.7	64	
869	A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques. <i>Ad Hoc Networks</i> , 2021 , 111, 102324	4.8	49	
868	Fault diagnosis based on deep learning for current-carrying ring of catenary system in sustainable railway transportation. <i>Applied Soft Computing Journal</i> , 2021 , 100, 106907	7.5	9	
867	Offloading Time Optimization via Markov Decision Process in Mobile-Edge Computing. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 2483-2493	10.7	25	
866	A Weighted Machine Learning-Based Attacks Classification to Alleviating Class Imbalance. <i>IEEE Systems Journal</i> , 2021 , 1-12	4.3	1	
865	. IEEE Internet of Things Journal, 2021 , 8, 8119-8132	10.7	52	

864	A load-adaptive fair access protocol for MAC in underwater acoustic sensor networks. <i>Journal of Network and Computer Applications</i> , 2021 , 173, 102867	7.9	3
863	Malware on Internet of UAVs Detection Combining String Matching and Fourier Transformation. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 9905-9919	10.7	1
862	DCNN-GA: A Deep Neural Net Architecture for Navigation of UAV in Indoor Environment. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 4448-4460	10.7	14
861	. IEEE Internet of Things Journal, 2021 , 8, 5722-5735	10.7	10
860	A Two-Tier Collection and Processing Scheme for Fog-Based Mobile Crowdsensing in the Internet of Vehicles. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 1971-1984	10.7	7
859	. IEEE Internet of Things Journal, 2021 , 8, 9787-9799	10.7	16
858	xTSeH: A Trusted Platform Module Sharing Scheme Towards Smart IoT-eHealth Devices. <i>IEEE Journal on Selected Areas in Communications</i> , 2021 , 39, 370-383	14.2	8
857	. IEEE Internet of Things Journal, 2021 , 8, 2943-2958	10.7	12
856	. IEEE Transactions on Computational Social Systems, 2021 , 8, 191-200	4.5	2
855	Joint Resource Allocation and Trajectory Optimization With QoS in UAV-Based NOMA Wireless Networks. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	12
854	An Energy-Efficient In-Network Computing Paradigm for 6G. <i>IEEE Transactions on Green Communications and Networking</i> , 2021 , 1-1	4	12
853	3-D Stochastic Geometry-based Modeling and Performance Analysis of Efficient Security Enhancement scheme for IoT Systems. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	O
852	Personalized Content Sharing via Mobile Crowdsensing. IEEE Internet of Things Journal, 2021, 1-1	10.7	1
851	Multicast at Edge: An Edge Network Architecture for Service-Less Crowdsourced Live Video Multicast. <i>IEEE Access</i> , 2021 , 9, 59508-59526	3.5	3
850	Privacy-Aware Collaborative Task Offloading in Fog Computing. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 1-9	4.5	3
849	Flying Social Networks: Architecture, Challenges and Open Issues. <i>IEEE Network</i> , 2021 , 1-7	11.4	1
848	LightTrust: Lightweight Trust Management for Edge Devices in Industrial Internet of Things. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	8
847	SWIPT-Enabled D2D Communication Underlaying NOMA-Based Cellular Networks in Imperfect CSI. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 70, 692-699	6.8	13

846	Blockchain-based Auditable Privacy-Preserving Data Classification for Internet-of-Things. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	1
845	Game Theory for Anti-Jamming Strategy in Multi-Channel Slow fading IoT Networks. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	8
844	An Intelligent Resource Reservation for Crowdsourced Live Video Streaming Applications in Geo-Distributed Cloud Environment. <i>IEEE Systems Journal</i> , 2021 , 1-13	4.3	4
843	An Elastic Resource Allocation Algorithm based on Dispersion Degree for Hybrid Requests in Satellite Optical Networks. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	O
842	PV-EncoNet: Fast Object Detection Based on Colored Point Cloud. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-12	6.1	O
841	Distributed CNN Inference on Resource-Constrained UAVs for Surveillance Systems: Design and Optimization. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	7
840	Cloud Mining Pool Aided Blockchain-Enabled Internet of Things: An Evolutionary Game Approach. <i>IEEE Transactions on Cloud Computing</i> , 2021 , 1-1	3.3	10
839	A Novel Pandemic Tracking Map: From Theory to Implementation. <i>IEEE Access</i> , 2021 , 9, 51106-51120	3.5	O
838	Millimeter Wave MIMO-OFDM With Index Modulation: A Pareto Paradigm on Spectral- Energy Efficiency Trade-Off. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	2
837	Fast, Reliable, and Secure Drone Communication: A Comprehensive Survey. <i>IEEE Communications Surveys and Tutorials</i> , 2021 , 1-1	37.1	17
836	IEPSBP: A Cost-efficient Image Encryption Algorithm based on Parallel Chaotic System for Green IoT. <i>IEEE Transactions on Green Communications and Networking</i> , 2021 , 1-1	4	12
835	SILedger: A Blockchain and ABE-based Access Control for Applications in SDN-IoT Networks. <i>IEEE Transactions on Network and Service Management</i> , 2021 , 1-1	4.8	8
834	Full-Duplex Quadrature Spatial Modulation for Multi-Antenna Systems. IEEE Network, 2021, 1-8	11.4	1
833	Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems. <i>IEEE Access</i> , 2021 , 9, 14271-14283	3.5	9
832	Enabling Efficient Scheduling in Large-Scale UAV-Assisted Mobile Edge Computing via Hierarchical Reinforcement Learning. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	9
831	RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems. <i>IEEE Access</i> , 2021 , 9, 54872-54887	3.5	3
830	DeepAutoD: Research on Distributed Machine Learning Oriented Scalable Mobile Communication Security Unpacking System. <i>IEEE Transactions on Network Science and Engineering</i> , 2021 , 1-1	4.9	2
829	Federated Learning and Autonomous UAVs for Hazardous Zone Detection and AQI Prediction in IoT Environment. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	4

828	QuicTor: Enhancing Tor for Real-Time Communication Using QUIC Transport Protocol. <i>IEEE Access</i> , 2021 , 9, 28769-28784	3.5	О
827	Backscatter-Enabled Efficient V2X Communication With Non-Orthogonal Multiple Access. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 70, 1724-1735	6.8	33
826	SDN Controllers. ACM Computing Surveys, 2021, 53, 1-40	13.4	14
825	Confidentiality and Timeliness of Data Dissemination in Platoon-based Vehicular Cyber-Physical Systems. <i>IEEE Network</i> , 2021 , 35, 248-254	11.4	2
824	Reinforcement Learning Power Control Algorithm Based on Graph Signal Processing for Ultra-Dense Mobile Networks. <i>IEEE Transactions on Network Science and Engineering</i> , 2021 , 8, 2694-270.	5 ^{4.9}	2
823	Coalitional Game-Based Cooperative Computation Offloading in MEC for Reusable Tasks. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 12968-12982	10.7	8
822	Honeypot Identification in Softwarized Industrial Cyber Physical Systems. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 5542-5551	11.9	12
821	A blockchain and deep neural networks-based secure framework for enhanced crop protection. <i>Ad Hoc Networks</i> , 2021 , 119, 102537	4.8	5
820	ISDNet: AI-enabled Instance Segmentation of Aerial Scenes for Smart Cities. <i>ACM Transactions on Internet Technology</i> , 2021 , 21, 1-18	3.8	3
819	A Vision on 6G-Enabled NIB: Requirements, Technologies, Deployments, and Prospects. <i>IEEE Wireless Communications</i> , 2021 , 28, 120-127	13.4	6
818	Artificial Intelligence Empowered QoS-Oriented Network Association for Next-Generation Mobile Networks. <i>IEEE Transactions on Cognitive Communications and Networking</i> , 2021 , 7, 856-870	6.6	7
817	RR-LADP: A Privacy-Enhanced Federated Learning Scheme for Internet of Everything. <i>IEEE Consumer Electronics Magazine</i> , 2021 , 10, 93-101	3.2	3
816	Machine-Learning-Based Efficient and Secure RSU Placement Mechanism for Software-Defined-IoV. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 13950-13957	10.7	14
815	Improve the reliability of 6G vehicular communication through skip network coding. <i>Vehicular Communications</i> , 2021 , 33, 100400	5.7	1
814	. IEEE Transactions on Industrial Informatics, 2021 , 17, 6134-6143	11.9	14
813	Privacy-Preserving and Incentivized Contact Tracing for COVID-19 Using Blockchain. <i>IEEE Internet of Things Magazine</i> , 2021 , 4, 72-79	3.5	3
812	An overview of quantum computing and quantum communication systems. <i>IET Quantum Communication</i> , 2021 , 2, 136-138	3.2	1
811	Contract and Lyapunov Optimization-Based Load Scheduling and Energy Management for UAV Charging Stations. <i>IEEE Transactions on Green Communications and Networking</i> , 2021 , 5, 1381-1394	4	6

810	Special Issue on Green Internet of Things: Challenges and Future Opportunities P art II. <i>IEEE</i> Transactions on Green Communications and Networking, 2021 , 5, 1011-1014	4		
809	Optimal Spectral Resource Allocation and Pricing for 5G and Beyond: A Game Theoretic Approach. <i>IEEE Networking Letters</i> , 2021 , 3, 119-123	2.8	0	
808	Blockchain-Empowered Digital Twins Collaboration: Smart Transportation Use Case. <i>Machines</i> , 2021 , 9, 193	2.9	14	
807	Edge and fog computing for IoT: A survey on current research activities & future directions. <i>Computer Communications</i> , 2021 ,	5.1	17	
806	A survey on 5G/6G, AI, and Robotics. <i>Computers and Electrical Engineering</i> , 2021 , 95, 107372	4.3	28	
805	Hadoop Perfect File: A fast and memory-efficient metadata access archive file to face small files problem in HDFS. <i>Journal of Parallel and Distributed Computing</i> , 2021 , 156, 119-130	4.4	3	
804	Malicious mining code detection based on ensemble learning in cloud computing environment. Simulation Modelling Practice and Theory, 2021 , 113, 102391	3.9	11	
803	DWES: A Dynamic Weighted Evaluation System for Scratch based on Computational Thinking. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2021 , 1-1	4.1	1	
802	Sustainability of Healthcare Data Analysis IoT-based Systems using Deep Federated Learning. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	7	
801	A multiple-kernel clustering based intrusion detection scheme for 5G and IoT networks. <i>International Journal of Machine Learning and Cybernetics</i> , 2021 , 12, 3129	3.8	7	
800	Two-Way MR-Forest Based Growing Path Classification for Malignancy Estimation of Pulmonary Nodules. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2021 , 25, 3752-3762	7.2	0	
799	Digital Twin for Intelligent Context-Aware IoT Healthcare Systems. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	49	
798	Deep Neural Backdoor in Semi-Supervised Learning: Threats and Countermeasures. <i>IEEE Transactions on Information Forensics and Security</i> , 2021 , 1-1	8	5	
797	A Survey of Cyber-Physical Attacks and Detection Methods in Smart Water Distribution Systems. <i>IEEE Access</i> , 2021 , 9, 99905-99921	3.5	5	
796	Improved Doppler Shift Estimation Algorithm for Down-Link Signals of Space-Based AIS. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 1-1	6.8	1	
795	Deep Reinforcement Learning for Network Selection over Heterogeneous Health Systems. <i>IEEE Transactions on Network Science and Engineering</i> , 2021 , 1-1	4.9	8	
794	Energy-Aware Blockchain and Federated Learning-Supported Vehicular Networks. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-12	6.1	5	
793	Optimal User-Edge Assignment in Hierarchical Federated Learning based on Statistical Properties and Network Topology Constraints. <i>IEEE Transactions on Network Science and Engineering</i> , 2021 , 1-1	4.9	12	

792	A Hybrid Approach for Seamless and Interoperable Communication in the Internet of Things. <i>IEEE Network</i> , 2021 , 1-7	11.4	2
791	A Review on the Role of Machine Learning in Enabling IoT Based Healthcare Applications. <i>IEEE Access</i> , 2021 , 9, 38859-38890	3.5	31
790	TamForen: A tamper-proof cloud forensic framework. <i>Transactions on Emerging Telecommunications Technologies</i> , 2020 , e4178	1.9	1
789	. IEEE Wireless Communications, 2020 , 27, 152-159	13.4	17
788	Overview of development and regulatory aspects of high altitude platform system. <i>Intelligent and Converged Networks</i> , 2020 , 1, 58-78	4	12
787	Collaborative hierarchical caching and transcoding in edge network with CE-D2D communication. <i>Journal of Network and Computer Applications</i> , 2020 , 172, 102801	7.9	4
786	An Adaptive Network Coding Scheme for Multipath Transmission in Cellular-Based Vehicular Networks. <i>Sensors</i> , 2020 , 20,	3.8	2
7 ⁸ 5	A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security. <i>IEEE Communications Surveys and Tutorials</i> , 2020 , 22, 1646-1685	37.1	256
784	FPGA for 5G: Re-configurable Hardware for Next Generation Communication. <i>IEEE Wireless Communications</i> , 2020 , 27, 140-147	13.4	9
783	Applying artificial bee colony algorithm to the multidepot vehicle routing problem. <i>Software - Practice and Experience</i> , 2020 ,	2.5	5
782	IoT malicious traffic identification using wrapper-based feature selection mechanisms. <i>Computers and Security</i> , 2020 , 94, 101863	4.9	75
781	A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones, AI, Blockchain, and 5G in Managing its Impact. <i>IEEE Access</i> , 2020 , 8, 90225-90265	3.5	451
780	Reliable Federated Learning for Mobile Networks. <i>IEEE Wireless Communications</i> , 2020 , 27, 72-80	13.4	142
779	An SDN Architecture for AUV-Based Underwater Wireless Networks to Enable Cooperative Underwater Search. <i>IEEE Wireless Communications</i> , 2020 , 27, 132-139	13.4	15
778	TIDCS: A Dynamic Intrusion Detection and Classification System Based Feature Selection. <i>IEEE Access</i> , 2020 , 8, 95864-95877	3.5	14
777	. IEEE Internet of Things Journal, 2020 , 7, 10336-10346	10.7	12
776	Blockchain-Enhanced High-Confidence Energy Sharing in Internet of Electric Vehicles. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 7868-7882	10.7	28
775	A Differentially Private Big Data Nonparametric Bayesian Clustering Algorithm in Smart Grid. <i>IEEE Transactions on Network Science and Engineering</i> , 2020 , 7, 2631-2641	4.9	9

(2020-2020)

774	Joint user association and resource allocation in HetNets based on user mobility prediction. <i>Computer Networks</i> , 2020 , 177, 107312	5.4	7	
773	. IEEE Transactions on Vehicular Technology, 2020 , 69, 9031-9040	6.8	17	
772	A blockchain-based architecture for secure vehicular Named Data Networks. <i>Computers and Electrical Engineering</i> , 2020 , 86, 106715	4.3	17	•
771	Ant-Colony-Based Complete-Coverage Path-Planning Algorithm for Underwater Gliders in Ocean Areas With Thermoclines. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 8959-8971	6.8	26	
770	Efficient and fair Wi-Fi and LTE-U coexistence via communications over content centric networking. <i>Future Generation Computer Systems</i> , 2020 , 112, 297-306	7.5	2	
769	Outlier Detection Approaches Based on Machine Learning in the Internet-of-Things. <i>IEEE Wireless Communications</i> , 2020 , 27, 53-59	13.4	10	
768	Scratch-DKG: A Framework for Constructing Scratch Domain Knowledge Graph. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2020 , 1-1	4.1	2	
767	Performance Analysis and Optimization for the MAC Protocol in UAV-Based IoT Network. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 8925-8937	6.8	9	
766	A blockchainized privacy-preserving support vector machine classification on mobile crowd sensed data. <i>Pervasive and Mobile Computing</i> , 2020 , 66, 101195	3.5	2	
765	A Distributed Mobile Fog Computing Scheme for Mobile Delay-Sensitive Applications in SDN-Enabled Vehicular Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 5481-5493	6.8	38	
764	A Blockchain-based Self-tallying Voting Protocol in Decentralized IoT. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2020 , 1-1	3.9	10	
763	A Distributed Framework for Energy Trading Between UAVs and Charging Stations for Critical Applications. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 5391-5402	6.8	42	
762	. IEEE Transactions on Vehicular Technology, 2020 , 69, 5403-5415	6.8	23	
761	Toward Reinforcement-Learning-Based Service Deployment of 5G Mobile Edge Computing with Request-Aware Scheduling. <i>IEEE Wireless Communications</i> , 2020 , 27, 84-91	13.4	16	
760	Blockchain-Assisted Secure Device Authentication for Cross-Domain Industrial IoT. <i>IEEE Journal on Selected Areas in Communications</i> , 2020 , 38, 942-954	14.2	88	
759	Deep learning-based security schemes for implantable medical devices 2020 , 109-130		3	
758	A Reinforcement Learning Method for Joint Mode Selection and Power Adaptation in the V2V Communication Network in 5G. <i>IEEE Transactions on Cognitive Communications and Networking</i> , 2020 , 6, 452-463	6.6	16	
757	Secure Lending: Blockchain and Prospect Theory-Based Decentralized Credit Scoring Model. <i>IEEE Transactions on Network Science and Engineering</i> , 2020 , 7, 2566-2575	4.9	8	

756	Blockchain applications for healthcare 2020 , 153-166		7
755	Dynamic Measurement and Data Calibration for Aerial Mobile IoT. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 5210-5219	10.7	4
754	A Differentially Private Classification Algorithm With High Utility for Wireless Body Area Networks 2020 ,		1
753	RL-OPRA: Reinforcement Learning for Online and Proactive Resource Allocation of crowdsourced live videos. <i>Future Generation Computer Systems</i> , 2020 , 112, 982-995	7.5	5
752	Accountable credential management system for vehicular communication. <i>Vehicular Communications</i> , 2020 , 25, 100279	5.7	7
751	Weighted Trustworthiness for ML Based Attacks Classification 2020,		4
750	Cluster-based Cooperative Multicast for Multimedia Data Dissemination in Vehicular Networks 2020 ,		3
749	Learning-Based Energy-Efficient Channel Selection for Edge Computing-Empowered Cognitive Machine-to-Machine Communications 2020 ,		2
748	. IEEE Transactions on Vehicular Technology, 2020 , 69, 3412-3423	6.8	3
747	. IEEE Transactions on Emerging Topics in Computing, 2020 , 1-1	4.1	67
747 746	. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2020 , 1-1 An adaptive cache management approach in ICN with pre-filter queues. <i>Computer Communications</i> , 2020 , 153, 250-263	4.1 5.1	6
	An adaptive cache management approach in ICN with pre-filter queues. <i>Computer Communications</i> ,		
746	An adaptive cache management approach in ICN with pre-filter queues. <i>Computer Communications</i> , 2020 , 153, 250-263 An incentive mechanism for data sharing based on blockchain with smart contracts. <i>Computers and</i>	5.1	6
746 745	An adaptive cache management approach in ICN with pre-filter queues. <i>Computer Communications</i> , 2020 , 153, 250-263 An incentive mechanism for data sharing based on blockchain with smart contracts. <i>Computers and Electrical Engineering</i> , 2020 , 83, 106587 Notice of Retraction: Electromagnetic Radiation Due to Cellular, Wi-Fi and Bluetooth Technologies:	5.1	6
746 745 744	An adaptive cache management approach in ICN with pre-filter queues. <i>Computer Communications</i> , 2020 , 153, 250-263 An incentive mechanism for data sharing based on blockchain with smart contracts. <i>Computers and Electrical Engineering</i> , 2020 , 83, 106587 Notice of Retraction: Electromagnetic Radiation Due to Cellular, Wi-Fi and Bluetooth Technologies: How Safe Are We?. <i>IEEE Access</i> , 2020 , 8, 42980-43000 Market-Based Model in CR-IoT: A Q-Probabilistic Multi-Agent Reinforcement Learning Approach.	5.1 4.3 3.5	6 39 6
746 745 744 743	An adaptive cache management approach in ICN with pre-filter queues. <i>Computer Communications</i> , 2020 , 153, 250-263 An incentive mechanism for data sharing based on blockchain with smart contracts. <i>Computers and Electrical Engineering</i> , 2020 , 83, 106587 Notice of Retraction: Electromagnetic Radiation Due to Cellular, Wi-Fi and Bluetooth Technologies: How Safe Are We?. <i>IEEE Access</i> , 2020 , 8, 42980-43000 Market-Based Model in CR-IoT: A Q-Probabilistic Multi-Agent Reinforcement Learning Approach. <i>IEEE Transactions on Cognitive Communications and Networking</i> , 2020 , 6, 179-188 Applications of blockchain in unmanned aerial vehicles: A review. <i>Vehicular Communications</i> , 2020 ,	5.1 4.3 3.5 6.6	6 39 6
746 745 744 743	An adaptive cache management approach in ICN with pre-filter queues. <i>Computer Communications</i> , 2020 , 153, 250-263 An incentive mechanism for data sharing based on blockchain with smart contracts. <i>Computers and Electrical Engineering</i> , 2020 , 83, 106587 Notice of Retraction: Electromagnetic Radiation Due to Cellular, Wi-Fi and Bluetooth Technologies: How Safe Are We?. <i>IEEE Access</i> , 2020 , 8, 42980-43000 Market-Based Model in CR-IoT: A Q-Probabilistic Multi-Agent Reinforcement Learning Approach. <i>IEEE Transactions on Cognitive Communications and Networking</i> , 2020 , 6, 179-188 Applications of blockchain in unmanned aerial vehicles: A review. <i>Vehicular Communications</i> , 2020 , 23, 100249	5.1 4.3 3.5 6.6	6 39 6 6 73

(2020-2020)

738	Lightweight Mutual Authentication Protocol for V2G Using Physical Unclonable Function. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 7234-7246	6.8	46	
737	A Lightweight and Secure Group Key Based Handover Authentication Protocol for the Software-Defined Space Information Network. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 3673-3684	9.6	24	
736	PPLS: a privacy-preserving location-sharing scheme in mobile online social networks. <i>Science China Information Sciences</i> , 2020 , 63, 1	3.4	8	
735	Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city. <i>Future Generation Computer Systems</i> , 2020 , 107, 433-442	7.5	111	
734	Adversarial Attacks for Image Segmentation on Multiple Lightweight Models. <i>IEEE Access</i> , 2020 , 8, 313	359 , 313	7 9	
733	Power Allocation for D2D Communications With SWIPT. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 2308-2320	9.6	19	
732	Guest Editorial Special Section on AI-Driven Developments in 5G-Envisioned Industrial Automation: Big Data Perspective. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 1291-1295	11.9	3	
731	T-CAM: Time-based content access control mechanism for ICN subscription systems. <i>Future Generation Computer Systems</i> , 2020 , 106, 607-621	7.5	4	
730	A Survey on Intent-Driven Networks. IEEE Access, 2020, 8, 22862-22873	3.5	22	
729	An Adaptive Computation Offloading Mechanism for Mobile Health Applications. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 998-1007	6.8	4	
728	A Survey of Blockchain Enabled Cyber-Physical Systems. Sensors, 2020, 20,	3.8	36	
727	StabTrustA Stable and Centralized Trust-Based Clustering Mechanism for IoT Enabled Vehicular Ad-Hoc Networks. <i>IEEE Access</i> , 2020 , 8, 21159-21177	3.5	36	
726	DAGIoV: A Framework for Vehicle to Vehicle Communication Using Directed Acyclic Graph and Game Theory. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 4182-4191	6.8	36	
725	To chain or not to chain: A reinforcement learning approach for blockchain-enabled IoT monitoring applications. <i>Future Generation Computer Systems</i> , 2020 , 111, 39-51	7.5	8	
724	Blockchain-Based Incentives for Secure and Collaborative Data Sharing in Multiple Clouds. <i>IEEE Journal on Selected Areas in Communications</i> , 2020 , 38, 1229-1241	14.2	37	
723	An Energy-Efficient Resource Allocation Scheme for SWIPT-NOMA Based Femtocells Users With Imperfect CSI. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 7790-7805	6.8	18	
722	Key-Policy Attribute-Based Encryption With Keyword Search in Virtualized Environments. <i>IEEE Journal on Selected Areas in Communications</i> , 2020 , 38, 1242-1251	14.2	10	
721	Privacy protection-based incentive mechanism for Mobile Crowdsensing. <i>Computer Communications</i> , 2020 , 156, 201-210	5.1	3	

72 0	ELC: Edge Linked Caching for content updating in information-centric Internet of Things. <i>Computer Communications</i> , 2020 , 156, 174-182	5.1	9
719	Cloudlet-Based Intelligent Auctioning Agents for Truthful Autonomous Electric Vehicles Energy Crowdsourcing. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 5457-5466	6.8	10
718	Federated Vehicular Networks: Design, Applications, Routing, and Evaluation 2020,		2
717	Implicit Feedback-based Group Recommender System for Internet of Things Applications 2020,		3
716	Performance Evaluation of Hyperledger Fabric 2020 ,		6
715	Dynamic Contract Design for Federated Learning in Smart Healthcare Applications. <i>IEEE Internet of Things Journal</i> , 2020 , 1-1	10.7	11
714	Disaster and Pandemic Management Using Machine Learning: A Survey. <i>IEEE Internet of Things Journal</i> , 2020 , 1-1	10.7	16
713	IntegrityChain: Provable Data Possession for Decentralized Storage. <i>IEEE Journal on Selected Areas in Communications</i> , 2020 , 38, 1205-1217	14.2	16
712	AI-Enabled Reliable Channel Modeling Architecture for Fog Computing Vehicular Networks. <i>IEEE Wireless Communications</i> , 2020 , 27, 14-21	13.4	23
711	A Flexible Enhanced Throughput and Reduced Overhead (FETRO) MAC Protocol for ETSI SmartBAN. <i>IEEE Transactions on Mobile Computing</i> , 2020 , 1-1	4.6	1
710	SecAuthUAV: A Novel Authentication Scheme for UAV-Ground Station and UAV-UAV Communication. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 15068-15077	6.8	48
709	Deep Reinforcement Learning for Real-Time Trajectory Planning in UAV Networks 2020,		3
708	Navigation and Obstacle Avoidance System in Unknown Environment 2020 ,		1
707	A Lightweight Authentication and Attestation Scheme for In-Transit Vehicles in IoV Scenario. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 14188-14197	6.8	14
706	Key Generation Based Fuzzy Logic and Elliptic Curve Cryptography for Internet of Things (IoT) Authentication 2020 ,		1
7°5	Directional Modulation for Secure RFID in Health Systems 2020 ,		1
704	Autonomous and Privacy-preserving Energy Trading Based on Redactable Blockchain in Smart Grid 2020 ,		3
703	IoV Scenario: Implementation of a Bandwidth Aware Algorithm in Wireless Network Communication Mode. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 15774-15785	6.8	14

70	A Privacy-Preserving Medical Data Sharing Scheme Based on Consortium Blockchain 2020 ,		1	
70	DistPrivacy: Privacy-Aware Distributed Deep Neural Networks in IoT surveillance systems 2020 ,		2	
70	Few-Shot Scale-Insensitive Object Detection for Edge Computing Platform. <i>IEEE Transactions on Sustainable Computing</i> , 2020 , 1-1	3.5	2	
69	9 Present landscape of quantum computing. <i>IET Quantum Communication</i> , 2020 , 1, 42-48	3.2	8	
69	Toward Incentivizing Fog-Based Privacy-Preserving Mobile Crowdsensing in the Internet of Vehicles. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 4128-4142	10.7	20	
69	A framework for topological based map building: A solution to autonomous robot navigation in smart cities. <i>Future Generation Computer Systems</i> , 2020 , 111, 644-653	7.5	11	
69	A deep learning based static taint analysis approach for IoT software vulnerability location. Measurement: Journal of the International Measurement Confederation, 2020, 152, 107139	4.6	14	
69	An Automated Refactoring Approach to Improve IoT Software Quality. <i>Applied Sciences</i> (Switzerland), 2020 , 10, 413	2.6	1	
69	5G Vehicular Network Resource Management for Improving Radio Access Through Machine Learning. <i>IEEE Access</i> , 2020 , 8, 6792-6800	3.5	54	
69	Enabling Efficient Coexistence of DSRC and C-V2X in Vehicular Networks. <i>IEEE Wireless Communications</i> , 2020 , 27, 134-140	13.4	27	
69	2 . IEEE Transactions on Vehicular Technology, 2020 , 69, 3166-3178	6.8	32	
69	An Efficient and Robust Data Aggregation Scheme Without a Trusted Authority for Smart Grid. <i>IEEE</i> Internet of Things Journal, 2020 , 7, 1949-1959	10.7	18	
69	Internet of Things Mobility Over Information-Centric/Named-Data Networking. <i>IEEE Internet Computing</i> , 2020 , 24, 14-24	2.4	14	
68	An Energy-Balanced Trust Cloud Migration Scheme for Underwater Acoustic Sensor Networks. <i>IEEE</i> Transactions on Wireless Communications, 2020 , 19, 1636-1649	9.6	12	
68	Automatic Concept Extraction Based on Semantic Graphs From Big Data in Smart City. <i>IEEE Transactions on Computational Social Systems</i> , 2020 , 7, 225-233	4.5	16	
68	PCCP: Proactive Video Chunks Caching and Processing in edge networks. <i>Future Generation Computer Systems</i> , 2020 , 105, 44-60	7.5	12	
68	Context-Aware Object Detection for Vehicular Networks Based on Edge-Cloud Cooperation. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 5783-5791	10.7	13	
68	PUC: Packet Update Caching for energy efficient IoT-based Information-Centric Networking. <i>Future Generation Computer Systems</i> , 2020 , 111, 634-643	7.5	25	

684	A Blockchain-SDN-Enabled Internet of Vehicles Environment for Fog Computing and 5G Networks. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 4278-4291	10.7	79
683	Blockchain-Based Anonymous Authentication With Selective Revocation for Smart Industrial Applications. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 3290-3300	11.9	37
682	TPPR: A Trust-Based and Privacy-Preserving Platoon Recommendation Scheme in VANET. <i>IEEE Transactions on Services Computing</i> , 2020 , 1-1	4.8	10
681	NeuroTrustArtificial-Neural-Network-Based Intelligent Trust Management Mechanism for Large-Scale Internet of Medical Things. <i>IEEE Internet of Things Journal</i> , 2020 , 1-1	10.7	9
68o	Bayesian Beamforming for Mobile Millimeter Wave Channel Tracking in the Presence of DOA Uncertainty. <i>IEEE Transactions on Communications</i> , 2020 , 68, 7547-7562	6.9	6
679	An optimal uplink traffic offloading algorithm via opportunistic communications based on machine learning. <i>Peer-to-Peer Networking and Applications</i> , 2020 , 13, 2285-2299	3.1	
678	Resource Cube: Multi-Virtual Resource Management for Integrated Satellite-Terrestrial Industrial IoT Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 11963-11974	6.8	9
677	An Intelligent Data Uploading Selection Mechanism for Offloading Uplink Traffic of Cellular Networks. <i>Sensors</i> , 2020 , 20,	3.8	1
676	A Co-Design-Based Reliable Low-Latency and Energy-Efficient Transmission Protocol for UWSNs. <i>Sensors</i> , 2020 , 20,	3.8	7
675	2020,		2
6 ₇₅	2020, FacebookVideoLive18: A Live Video Streaming Dataset for Streams Metadata and Online Viewers Locations 2020,		6
	FacebookVideoLive18: A Live Video Streaming Dataset for Streams Metadata and Online Viewers	9.9	
674	FacebookVideoLive18: A Live Video Streaming Dataset for Streams Metadata and Online Viewers Locations 2020 ,	9.9	6
6 ₇₄	FacebookVideoLive18: A Live Video Streaming Dataset for Streams Metadata and Online Viewers Locations 2020, . IEEE Vehicular Technology Magazine, 2020, 15, 95-100 A Lightweight Attribute Based Encryption Scheme with Constant Size Ciphertext for Internet of	9.9	6
674 673 672	FacebookVideoLive18: A Live Video Streaming Dataset for Streams Metadata and Online Viewers Locations 2020, . IEEE Vehicular Technology Magazine, 2020, 15, 95-100 A Lightweight Attribute Based Encryption Scheme with Constant Size Ciphertext for Internet of Things 2020,	9.9	6 4
674 673 672	FacebookVideoLive18: A Live Video Streaming Dataset for Streams Metadata and Online Viewers Locations 2020, . IEEE Vehicular Technology Magazine, 2020, 15, 95-100 A Lightweight Attribute Based Encryption Scheme with Constant Size Ciphertext for Internet of Things 2020, A Blockchain-based Conditional Privacy-Preserving Traffic Data Sharing in Cloud 2020, COVID-19 Optimizer Algorithm, Modeling and Controlling of Coronavirus Distribution Process. IEEE		645
674 673 672 671	FacebookVideoLive18: A Live Video Streaming Dataset for Streams Metadata and Online Viewers Locations 2020, . IEEE Vehicular Technology Magazine, 2020, 15, 95-100 A Lightweight Attribute Based Encryption Scheme with Constant Size Ciphertext for Internet of Things 2020, A Blockchain-based Conditional Privacy-Preserving Traffic Data Sharing in Cloud 2020, COVID-19 Optimizer Algorithm, Modeling and Controlling of Coronavirus Distribution Process. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2765-2775		64518

(2020-2020)

666	Cognitive Balance for Fog Computing Resource in Internet of Things: An Edge Learning Approach. <i>IEEE Transactions on Mobile Computing</i> , 2020 , 1-1	4.6	10
665	Space-Ground Integrated Information Network Enabled Internet of Vehicles: Architecture and Key Mechanisms. <i>IEEE Communications Standards Magazine</i> , 2020 , 4, 11-17	3.3	3
664	. IEEE Transactions on Communications, 2020 , 68, 6750-6760	6.9	18
663	DL-CRC: Deep Learning-Based Chest Radiograph Classification for COVID-19 Detection: A Novel Approach <i>IEEE Access</i> , 2020 , 8, 171575-171589	3.5	37
662	IEEE Access Special Section Editorial: Mobile Edge Computing and Mobile Cloud Computing: Addressing Heterogeneity and Energy Issues of Compute and Network Resources. <i>IEEE Access</i> , 2020 , 8, 163769-163774	3.5	3
661	Text Data Truth Discovery Using Self-confidence of Sources 2020,		1
660	A Physical Layer Security Scheme with Compressed Sensing in OFDM-based IoT Systems 2020 ,		4
659	A Graph Convolutional Network-Based Deep Reinforcement Learning Approach for Resource Allocation in a Cognitive Radio Network. <i>Sensors</i> , 2020 , 20,	3.8	6
658	An IoT and Edge Computing Based Framework for Charge Scheduling and EV Selection in V2G Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 10569-10580	6.8	13
657	DwaRa: A Deep Learning-Based Dynamic Toll Pricing Scheme for Intelligent Transportation Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 12510-12520	6.8	14
656	IoT Anti-Jamming Strategy Using Game Theory and Neural Network 2020,		3
655	Multi-Access Edge Computing: A Survey. <i>IEEE Access</i> , 2020 , 8, 197017-197046	3.5	37
654	A Disaster Management-Oriented Path Planning for Mobile Anchor Node-Based Localization in Wireless Sensor Networks. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2020 , 8, 115-125	4.1	64
653	. IEEE Transactions on Mobile Computing, 2020 , 19, 300-313	4.6	39
652	Multi-layer security scheme for implantable medical devices. <i>Neural Computing and Applications</i> , 2020 , 32, 4347-4360	4.8	9
651	Placement delivery array design for the coded caching scheme in medical data sharing. <i>Neural Computing and Applications</i> , 2020 , 32, 867-878	4.8	1
650	Intersection Fog-Based Distributed Routing for V2V Communication in Urban Vehicular Ad Hoc Networks. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 21, 2409-2426	6.1	34
649	A High-Availability Data Collection Scheme based on Multi-AUVs for Underwater Sensor Networks. <i>IEEE Transactions on Mobile Computing</i> , 2020 , 19, 1010-1022	4.6	56

648	Towards secure and efficient energy trading in IIoT-enabled energy internet: A blockchain approach. <i>Future Generation Computer Systems</i> , 2020 , 110, 686-695	7.5	46
647	Secure and Lightweight Authentication Scheme for Smart Metering Infrastructure in Smart Grid. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 3548-3557	11.9	43
646	Optimal Rate-Adaptive Data Dissemination in Vehicular Platoons. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 21, 4241-4251	6.1	10
645	A Distributed Deep Learning System for Web Attack Detection on Edge Devices. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 1963-1971	11.9	117
644	Secure medical treatment with deep learning on embedded board 2020 , 131-151		5
643	Aggregate in my way: Privacy-preserving data aggregation without trusted authority in ICN. <i>Future Generation Computer Systems</i> , 2020 , 111, 107-116	7.5	9
642	A Course-Aware Opportunistic Routing Protocol for FANETs. <i>IEEE Access</i> , 2019 , 7, 144303-144312	3.5	13
641	A Secure, Lightweight, and Privacy-Preserving Authentication Scheme for V2G Connections in Smart Grid 2019 ,		4
640	. IEEE Transactions on Vehicular Technology, 2019 , 68, 9280-9292	6.8	19
639	. IEEE Wireless Communications, 2019 , 26, 152-159	13.4	15
639 638	. IEEE Wireless Communications, 2019, 26, 152-159 Efficient EEG Mobile Edge Computing and Optimal Resource Allocation for Smart Health Applications 2019,	13.4	2
	Efficient EEG Mobile Edge Computing and Optimal Resource Allocation for Smart Health	13.4 6.8	
638	Efficient EEG Mobile Edge Computing and Optimal Resource Allocation for Smart Health Applications 2019 , Heterogeneous Information Network-Based Content Caching in the Internet of Vehicles. <i>IEEE</i>	6.8	2 48
638 637	Efficient EEG Mobile Edge Computing and Optimal Resource Allocation for Smart Health Applications 2019, Heterogeneous Information Network-Based Content Caching in the Internet of Vehicles. IEEE Transactions on Vehicular Technology, 2019, 68, 10216-10226	6.8	2 48
638 637 636	Efficient EEG Mobile Edge Computing and Optimal Resource Allocation for Smart Health Applications 2019, Heterogeneous Information Network-Based Content Caching in the Internet of Vehicles. <i>IEEE Transactions on Vehicular Technology</i> , 2019, 68, 10216-10226 A Prediction Method for Destination Based on the Semantic Transfer Model. <i>IEEE Access</i> , 2019, 7, 7375 Online Parallelized Service Function Chain Orchestration in Data Center Networks. <i>IEEE Access</i> ,	6.8 66-3.376	2 48
638 637 636	Efficient EEG Mobile Edge Computing and Optimal Resource Allocation for Smart Health Applications 2019, Heterogeneous Information Network-Based Content Caching in the Internet of Vehicles. <i>IEEE Transactions on Vehicular Technology</i> , 2019, 68, 10216-10226 A Prediction Method for Destination Based on the Semantic Transfer Model. <i>IEEE Access</i> , 2019, 7, 7375 Online Parallelized Service Function Chain Orchestration in Data Center Networks. <i>IEEE Access</i> , 2019, 7, 100147-100161	6.8 66-3.376	2 48 333 23
638 637 636 635	Efficient EEG Mobile Edge Computing and Optimal Resource Allocation for Smart Health Applications 2019, Heterogeneous Information Network-Based Content Caching in the Internet of Vehicles. <i>IEEE Transactions on Vehicular Technology</i> , 2019, 68, 10216-10226 A Prediction Method for Destination Based on the Semantic Transfer Model. <i>IEEE Access</i> , 2019, 7, 7375 Online Parallelized Service Function Chain Orchestration in Data Center Networks. <i>IEEE Access</i> , 2019, 7, 100147-100161 Joint Security and Energy Efficiency in IoT Networks Through Clustering and Bit Flipping 2019, Design of Protograph-LDPC-Based BICM-ID for Multi-Level-Cell (MLC) NAND Flash Memory. <i>IEEE</i>	6.8 66- 7.3 76 3.5	2 48 333 23 3

630	Solving Security Problems in MEC Systems 2019 ,		1
629	A Machine Learning Approach of Load Balance Routing to Support Next-Generation Wireless Networks 2019 ,		3
628	A Synergetic Trust Model Based on SVM in Underwater Acoustic Sensor Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 11239-11247	6.8	24
627	A Novel DCT-Based Compression Scheme for 5G Vehicular Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 10872-10881	6.8	11
626	Dynamic Stress Measurement with Sensor Data Compensation. <i>Electronics (Switzerland)</i> , 2019 , 8, 859	2.6	1
625	CE-D2D: Dual Framework Chunks Caching and offloading in Collaborative Edge networks with D2D communication 2019 ,		5
624	Cooperative Secret Key Generation for Platoon-Based Vehicular Communications 2019,		5
623	Secured Fine-Grained Selective Access to Outsourced Cloud Data in IoT Environments. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 10749-10762	10.7	13
622	An Optimal Channel Occupation Time Adjustment Method for LBE in Unlicensed Spectrum. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 10943-10955	6.8	2
621	g-RAT A Novel Graphical Randomized Authentication Technique for Consumer Smart Devices. <i>IEEE Transactions on Consumer Electronics</i> , 2019 , 65, 215-223	4.8	13
620	Blockchain and IoT-Based Cognitive Edge Framework for Sharing Economy Services in a Smart City. <i>IEEE Access</i> , 2019 , 7, 18611-18621	3.5	134
619	Deep neural network-aided Gaussian message passing detection for ultra-reliable low-latency communications. <i>Future Generation Computer Systems</i> , 2019 , 95, 629-638	7.5	8
618	A Heuristic Statistical Testing Based Approach for Encrypted Network Traffic Identification. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 3843-3853	6.8	10
617	. IEEE Access, 2019 , 7, 12809-12821	3.5	8
616	Multi-Modal Data Semantic Localization With Relationship Dependencies for Efficient Signal Processing in EH CRNs. <i>IEEE Transactions on Cognitive Communications and Networking</i> , 2019 , 5, 347-357	7 ^{6.6}	2
615	A blockchain-based fog computing framework for activity recognition as an application to e-Healthcare services. <i>Future Generation Computer Systems</i> , 2019 , 100, 569-578	7.5	55
614	Design Challenges of Multi-UAV Systems in Cyber-Physical Applications: A Comprehensive Survey and Future Directions. <i>IEEE Communications Surveys and Tutorials</i> , 2019 , 21, 3340-3385	37.1	90
613	Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study. <i>IEEE Access</i> , 2019 , 7, 63457-6	3 4.7 1	8

612	Spammer Detection and Fake User Identification on Social Networks. <i>IEEE Access</i> , 2019 , 7, 68140-6815.	2 3.5	35
611	Scalable explicit path control in software-defined networks. <i>Journal of Network and Computer Applications</i> , 2019 , 141, 86-103	7.9	O
610	False-Alarm Detection in the Fog-Based Internet of Connected Vehicles. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 7035-7044	6.8	14
609	Double Auction Mechanisms For Dynamic Autonomous Electric Vehicles Energy Trading. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 7466-7476	6.8	20
608	iCAFE: Intelligent Congestion Avoidance and Fast Emergency services. <i>Future Generation Computer Systems</i> , 2019 , 99, 365-375	7.5	19
607	Prediction-Based Delay Optimization Data Collection Algorithm for Underwater Acoustic Sensor Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 6926-6936	6.8	31
606	. IEEE Access, 2019 , 7, 45773-45782	3.5	14
605	When Energy Trading Meets Blockchain in Electrical Power System: The State of the Art. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 1561	2.6	80
604	A survey of Internet of Things communication using ICN: A use case perspective. <i>Computer Communications</i> , 2019 , 142-143, 95-123	5.1	61
603	RobustTrust A Pro-Privacy Robust Distributed Trust Management Mechanism for Internet of Things. <i>IEEE Access</i> , 2019 , 7, 62095-62106	3.5	39
602	HoliTrust-A Holistic Cross-Domain Trust Management Mechanism for Service-Centric Internet of Things. <i>IEEE Access</i> , 2019 , 7, 52191-52201	3.5	40
601	How to Govern the Non-Cooperative Amateur Drones?. <i>IEEE Network</i> , 2019 , 33, 184-189	11.4	9
600	A Communication Framework with Unified Efficiency and Secrecy. <i>IEEE Wireless Communications</i> , 2019 , 26, 133-139	13.4	2
599	SE-AOMDV: secure and efficient AOMDV routing protocol for vehicular communications. <i>International Journal of Information Security</i> , 2019 , 18, 665-676	2.8	9
598	An AUV Location Prediction-Based Data Collection Scheme for Underwater Wireless Sensor Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 6037-6049	6.8	44
597	Location-Based Seeds Selection for Influence Blocking Maximization in Social Networks. <i>IEEE Access</i> , 2019 , 7, 27272-27287	3.5	13
596	A Computation Offloading Incentive Mechanism with Delay and Cost Constraints under 5G Satellite-Ground IoV Architecture. <i>IEEE Wireless Communications</i> , 2019 , 26, 124-132	13.4	24
595	A Probabilistic Source Location Privacy Protection Scheme in Wireless Sensor Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 5917-5927	6.8	12

(2019-2019)

594	Machine learning in the Internet of Things: Designed techniques for smart cities. <i>Future Generation Computer Systems</i> , 2019 , 100, 826-843	7.5	71
593	. IEEE Internet of Things Journal, 2019 , 6, 2309-2324	10.7	27
592	A Privacy-Preserving Traffic Monitoring Scheme via Vehicular Crowdsourcing. <i>Sensors</i> , 2019 , 19,	3.8	12
591	3D Beamforming With Massive Cylindrical Arrays for Physical Layer Secure Data Transmission. <i>IEEE Communications Letters</i> , 2019 , 23, 830-833	3.8	3
590	Cross Layer NOMA Interference Mitigation for Femtocell Users in 5G Environment. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 4721-4733	6.8	30
589	Secure Edge of Things for Smart Healthcare Surveillance Framework. <i>IEEE Access</i> , 2019 , 7, 31010-31021	3.5	47
588	Privacy-Preserving Support Vector Machine Training Over Blockchain-Based Encrypted IoT Data in Smart Cities. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 7702-7712	10.7	185
587	Priority-Based Medium Access Control for Wireless Body Area Networks With High-Performance Design. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 5363-5375	10.7	17
586	A Spark-Based Parallel Fuzzy \$c\$ -Means Segmentation Algorithm for Agricultural Image Big Data. <i>IEEE Access</i> , 2019 , 7, 42169-42180	3.5	24
585	A Blockchain-Based Non-Invasive Cyber-Physical Occupational Therapy Framework: BCI Perspective. <i>IEEE Access</i> , 2019 , 7, 34874-34884	3.5	14
584	Super-Resolution of Brain MRI Images Using Overcomplete Dictionaries and Nonlocal Similarity. <i>IEEE Access</i> , 2019 , 7, 25897-25907	3.5	10
583	Collaborative joint caching and transcoding in mobile edge networks. <i>Journal of Network and Computer Applications</i> , 2019 , 136, 86-99	7.9	20
582	A Fog Computing Solution for Context-Based Privacy Leakage Detection for Android Healthcare Devices. <i>Sensors</i> , 2019 , 19,	3.8	9
581	A Secured Proxy-Based Data Sharing Module in IoT Environments Using Blockchain. <i>Sensors</i> , 2019 , 19,	3.8	19
580	Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. <i>IEEE Access</i> , 2019 , 7, 48572-48634	3.5	603
579	Predictive analysis in outpatients assisted by the Internet of Medical Things. <i>Future Generation Computer Systems</i> , 2019 , 98, 219-226	7.5	11
578	Infrared Small Target Detection Through Multiple Feature Analysis Based on Visual Saliency. <i>IEEE Access</i> , 2019 , 7, 38996-39004	3.5	20
577	Autonomous monitoring in healthcare environment: Reward-based energy charging mechanism for IoMT wireless sensing nodes. <i>Future Generation Computer Systems</i> , 2019 , 98, 565-576	7.5	19

576	. IEEE Transactions on Industrial Informatics, 2019 , 15, 3670-3679	11.9	37
575	A Novel Deep Learning Strategy for Classifying Different Attack Patterns for Deep Brain Implants. <i>IEEE Access</i> , 2019 , 7, 24154-24164	3.5	22
574	Optimal Preamble Design in Spatial Group-Based Random Access for Satellite-M2M Communications. <i>IEEE Wireless Communications Letters</i> , 2019 , 8, 953-956	5.9	10
573	. IEEE Access, 2019 , 7, 13867-13881	3.5	4
572	Achieving data utility-privacy tradeoff in Internet of Medical Things: A machine learning approach. <i>Future Generation Computer Systems</i> , 2019 , 98, 60-68	7.5	38
571	. IEEE Access, 2019 , 7, 32551-32561	3.5	28
570	LPTD: Achieving lightweight and privacy-preserving truth discovery in CloT. <i>Future Generation Computer Systems</i> , 2019 , 90, 175-184	7.5	35
569	An IoT and Blockchain-Based Multi-Sensory In-Home Quality of Life Framework for Cancer Patients 2019 ,		6
568	Empirical Performance Evaluation of QUIC Protocol for Tor Anonymity Network 2019,		3
567	Secret Key Agreement for Data Dissemination in Vehicular Platoons. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 9060-9073	6.8	8
566	QoE-Aware Resource Allocation for Crowdsourced Live Streaming: A Machine Learning Approach 2019 ,		9
565	An NB-IoT-based smart trash can system for improved health in smart cities 2019 ,		4
564	Resource Allocation in Information-Centric Wireless Networking With D2D-Enabled MEC: A Deep Reinforcement Learning Approach. <i>IEEE Access</i> , 2019 , 7, 114935-114944	3.5	14
563	Secure mHealth IoT Data Transfer from the Patient to the Hospital: A Three-Tier Approach. <i>IEEE Wireless Communications</i> , 2019 , 26, 70-76	13.4	5
562	Novel Hybrid Physical Layer Security Technique in RFID Systems 2019,		4
561	Proactive Eavesdropping via Jamming for Trajectory Tracking of UAVs 2019,		3
560	Secure UAV Communication Networks over 5G. <i>IEEE Wireless Communications</i> , 2019 , 26, 114-120	13.4	80
559	. IEEE Internet of Things Journal, 2019 , 6, 9165-9174	10.7	21

558	Caching mechanism for mobile edge computing in V2I networks. <i>Transactions on Emerging Telecommunications Technologies</i> , 2019 , 30, e3689	,	3
557	A Novel Crowd-sourcing Inference Method 2019 ,		2
556	An Incentive Mechanism Design for Socially Aware Crowdsensing Services with Incomplete Information. <i>IEEE Communications Magazine</i> , 2019 , 57, 74-80		20
555	Channel Measurement and Resource Allocation Scheme for Dual-Band Airborne Access Networks. <i>IEEE Access</i> , 2019 , 7, 80870-80883		8
554	A Novel Secure Authentication Scheme for Heterogeneous Internet of Things 2019,	,	5
553	Mobility Management for Intro/Inter Domain Handover in Software-Defined Networks. <i>IEEE Journal on Selected Areas in Communications</i> , 2019 , 37, 1739-1754	٠.	21
552	. IEEE Transactions on Vehicular Technology, 2019 , 68, 8322-8335 6.8		72
551	Achieving Secure and Efficient Cloud Search Services: Cross-Lingual Multi-Keyword Rank Search Over Encrypted Cloud Data 2019 ,		2
550	Location Privacy Preservation for Mobile Users in Location-Based Services. <i>IEEE Access</i> , 2019 , 7, 87425-8343	8	24
549	Toward SLAs Guaranteed Scalable VDC Provisioning in Cloud Data Centers. <i>IEEE Access</i> , 2019 , 7, 80219-893	32	12
548	Machine Learning Aided Load Balance Routing Scheme Considering Queue Utilization. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 7987-7999		26
547	COCME: Content-Oriented Caching on the Mobile Edge for Wireless Communications. <i>IEEE Wireless Communications</i> , 2019 , 26, 26-31		22
546	Evaluating Reputation Management Schemes of Internet of Vehicles Based on Evolutionary Game Theory. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 5971-5980		97
545	Special Section on Emerging Trends Issues and Challenges in Edge Artificial Intelligence. <i>IEEE Transactions on Industrial Informatics</i> , 2019 , 15, 4172-4177) .	2
544	Leveraging utilization as performance metric for CDN enabled energy efficient internet of things. Measurement: Journal of the International Measurement Confederation, 2019, 147, 106814 4.6		12
543	A Survey on Recent Approaches in Intrusion Detection System in IoTs 2019 ,		11
542	Lightweight and Privacy-Preserving Medical Services Access for Healthcare Cloud. <i>IEEE Access</i> , 2019 , 7, 106951-106961		14
541	Dual-Polarized Spatial Temporal Propagation Measurement and Modeling in UMa O2I Scenario at 3.5 GHz. <i>IEEE Access</i> , 2019 , 7, 122988-123001		3

540	A Decade of Internet of Things: Analysis in the Light of Healthcare Applications. <i>IEEE Access</i> , 2019 , 7, 89967-89979	3.5	43
539	Toward Intelligent Network Optimization in Wireless Networking: An Auto-Learning Framework. <i>IEEE Wireless Communications</i> , 2019 , 26, 76-82	13.4	14
538	2019,		7
537	Evolution-algorithm-based unmanned aerial vehicles path planning in complex environment. <i>Computers and Electrical Engineering</i> , 2019 , 80, 106493	4.3	8
536	Using Bloom Filter to Generate a Physiological Signal-Based Key for Wireless Body Area Networks. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 10396-10407	10.7	3
535	The Industrial Internet of Things. <i>IEEE Network</i> , 2019 , 33, 4-4	11.4	2
534	POKs Based Secure and Energy-Efficient Access Control for Implantable Medical Devices. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2019 , 105-125	0.2	1
533	Security and privacy preservation in fog-based crowd sensing on the internet of vehicles. <i>Journal of Network and Computer Applications</i> , 2019 , 134, 89-99	7.9	36
532	Adversarial Samples on Android Malware Detection Systems for IoT Systems. Sensors, 2019, 19,	3.8	28
531	A Self-Selective Correlation Ship Tracking Method for Smart Ocean Systems. <i>Sensors</i> , 2019 , 19,	3.8	6
530	Biometric-based authentication scheme for Implantable Medical Devices during emergency situations. <i>Future Generation Computer Systems</i> , 2019 , 98, 109-119	7.5	15
529	Mobile Millimeter Wave Channel Tracking: A Bayesian Beamforming Framework against DOA Uncertainty 2019 ,		6
528	Secure DoF for the MIMO MAC: The Case of Knowing Eavesdropper's Channel Statistics Only 2019 ,		1
527	A Design of Firewall Based on Feedback of Intrusion Detection System in Cloud Environment 2019 ,		5
526	An Efficient and Privacy-Preserving Energy Trading Scheme Based on Blockchain 2019,		1
525	A Blockchain Model for Fair Data Sharing in Deregulated Smart Grids 2019 ,		40
524	2019,		12
523	Transcoding Resources Forecasting and Reservation for Crowdsourced Live Streaming 2019,		4

522	The Power of AI in IoT: Cognitive IoT-based Scheme for Web Spam Detection 2019 ,		1
521	Answer Acquisition for Knowledge Base Question Answering Systems Based on Dynamic Memory Network. <i>IEEE Access</i> , 2019 , 7, 161329-161339	3.5	2
520	Cooperative Secondary Encryption for Primary Privacy Preserving in Cognitive Radio Networks. <i>IEEE Access</i> , 2019 , 7, 160573-160585	3.5	O
519	BNNC: Improving Performance of Multipath Transmission in Heterogeneous Vehicular Networks. <i>IEEE Access</i> , 2019 , 7, 158113-158125	3.5	6
518	Proactive Video Chunks Caching and Processing for Latency and Cost Minimization in Edge Networks 2019 ,		8
517	An Anti-Interference Scheme for UAV Data Links in Air-Ground Integrated Vehicular Networks. <i>Sensors</i> , 2019 , 19,	3.8	8
516	Future Communication Trends toward Internet of Things Services and Applications. <i>IEEE Wireless Communications</i> , 2019 , 26, 6-8	13.4	13
515	DVF-fog: distributed virtual firewall in fog computing based on risk analysis. <i>International Journal of Sensor Networks</i> , 2019 , 30, 242	0.8	2
514	Fog-cloud distributed intrusion detection and cooperation. <i>Transactions on Emerging Telecommunications Technologies</i> , 2019 , e3835	1.9	
513	Blockchain-Based Distributed Energy Trading in Energy Internet: An SDN Approach. <i>IEEE Access</i> , 2019 , 7, 173817-173826	3.5	14
513 512		3.5	14
	2019 , 7, 173817-173826	3.5	2
512	2019, 7, 173817-173826 EDGE AI for Heterogeneous and Massive IoT Networks 2019, Markov Decision-Based Pilot Optimization for 5G V2X Vehicular Communications. <i>IEEE Internet of</i>		2
512 511	2019, 7, 173817-173826 EDGE AI for Heterogeneous and Massive IoT Networks 2019, Markov Decision-Based Pilot Optimization for 5G V2X Vehicular Communications. <i>IEEE Internet of Things Journal</i> , 2019, 6, 1090-1103 BLLC: A Batch-Level Update Mechanism With Low Cost for SDN-IoT Networks. <i>IEEE Internet of</i>	10.7	2
512 511 510	2019, 7, 173817-173826 EDGE AI for Heterogeneous and Massive IoT Networks 2019, Markov Decision-Based Pilot Optimization for 5G V2X Vehicular Communications. <i>IEEE Internet of Things Journal</i> , 2019, 6, 1090-1103 BLLC: A Batch-Level Update Mechanism With Low Cost for SDN-IoT Networks. <i>IEEE Internet of Things Journal</i> , 2019, 6, 1210-1222 Adversarial attacks against profile HMM website fingerprinting detection model. <i>Cognitive Systems</i>	10.7	2 12 5
512 511 510 509	EDGE AI for Heterogeneous and Massive IoT Networks 2019, Markov Decision-Based Pilot Optimization for 5G V2X Vehicular Communications. <i>IEEE Internet of Things Journal</i> , 2019, 6, 1090-1103 BLLC: A Batch-Level Update Mechanism With Low Cost for SDN-IoT Networks. <i>IEEE Internet of Things Journal</i> , 2019, 6, 1210-1222 Adversarial attacks against profile HMM website fingerprinting detection model. <i>Cognitive Systems Research</i> , 2019, 54, 83-89 A Novel Control Plane Optimization Strategy for Important Nodes in SDN-IoT Networks. <i>IEEE</i>	10.7	2 12 5
512511510509508	EDGE AI for Heterogeneous and Massive IoT Networks 2019, Markov Decision-Based Pilot Optimization for 5G V2X Vehicular Communications. <i>IEEE Internet of Things Journal</i> , 2019, 6, 1090-1103 BLLC: A Batch-Level Update Mechanism With Low Cost for SDN-IoT Networks. <i>IEEE Internet of Things Journal</i> , 2019, 6, 1210-1222 Adversarial attacks against profile HMM website fingerprinting detection model. <i>Cognitive Systems Research</i> , 2019, 54, 83-89 A Novel Control Plane Optimization Strategy for Important Nodes in SDN-IoT Networks. <i>IEEE Internet of Things Journal</i> , 2019, 6, 3558-3571 A review of information centric network-based internet of things: communication architectures,	10.7 10.7 4.8 10.7	2 12 5 3 20

504	When Traffic Flow Prediction and Wireless Big Data Analytics Meet. IEEE Network, 2019, 33, 161-167	11.4	17
503	A Survey on Mobile Crowd-Sensing and Its Applications in the IoT Era. <i>IEEE Access</i> , 2019 , 7, 3855-3881	3.5	30
502	LAMANCO: A Lightweight Anonymous Mutual Authentication Scheme for \$N\$ -Times Computing Offloading in IoT. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 4462-4471	10.7	19
501	Performance Modeling of Representative Load Sharing Schemes for Clustered Servers in Multiaccess Edge Computing. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 4880-4888	10.7	23
500	Timing Channel in IaaS: How to Identify and Investigate. <i>IEEE Access</i> , 2019 , 7, 1-11	3.5	179
499	. IEEE Access, 2019 , 7, 29763-29787	3.5	104
498	A Friendly and Low-Cost Technique for Capturing Non-Cooperative Civilian Unmanned Aerial Vehicles. <i>IEEE Network</i> , 2019 , 33, 146-151	11.4	20
497	LRCoin: Leakage-Resilient Cryptocurrency Based on Bitcoin for Data Trading in IoT. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 4702-4710	10.7	15
496	Space and Terrestrial Integrated Networks. <i>IEEE Network</i> , 2019 , 33, 2-2	11.4	1
495	CPSLP: A Cloud-Based Scheme for Protecting Source Location Privacy in Wireless Sensor Networks Using Multi-Sinks. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 2739-2750	6.8	36
494	Seamless Handoffs in Wireless HetNets: Transport-Layer Challenges and Multi-Path TCP Solutions with Cross-Layer Awareness. <i>IEEE Network</i> , 2019 , 33, 195-201	11.4	9
493	A data-driven method for future Internet route decision modeling. <i>Future Generation Computer Systems</i> , 2019 , 95, 212-220	7.5	92
492	Security Analysis of a Space-Based Wireless Network. <i>IEEE Network</i> , 2019 , 33, 36-43	11.4	47
491	A survey on location privacy protection in Wireless Sensor Networks. <i>Journal of Network and Computer Applications</i> , 2019 , 125, 93-114	7.9	20
490	Bringing Deep Learning at the Edge of Information-Centric Internet of Things. <i>IEEE Communications Letters</i> , 2019 , 23, 52-55	3.8	55
489	Tac-U: A traffic balancing scheme over licensed and unlicensed bands for Tactile Internet. <i>Future Generation Computer Systems</i> , 2019 , 97, 41-49	7.5	7
488	Cost-Efficient Service Function Chain Orchestration for Low-Latency Applications in NFV Networks. <i>IEEE Systems Journal</i> , 2019 , 13, 3877-3888	4.3	24
487	Energy-efficient and traffic-aware service function chaining orchestration in multi-domain networks. <i>Future Generation Computer Systems</i> , 2019 , 91, 347-360	7.5	56

(2018-2019)

486	Process state synchronization-based application execution management for mobile edge/cloud computing. <i>Future Generation Computer Systems</i> , 2019 , 91, 579-589	7.5	16
485	Shaving Data Center Power Demand Peaks Through Energy Storage and Workload Shifting Control. <i>IEEE Transactions on Cloud Computing</i> , 2019 , 7, 1095-1108	3.3	13
484	A Large-Scale Concurrent Data Anonymous Batch Verification Scheme for Mobile Healthcare Crowd Sensing. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 1321-1330	10.7	23
483	Cognitive Sensors Based on Ridge Phase-Smoothing Localization and Multiregional Histograms of Oriented Gradients. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2019 , 7, 123-134	4.1	6
482	Exploiting Task Elasticity and Price Heterogeneity for Maximizing Cloud Computing Profits. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2018 , 6, 85-96	4.1	14
481	Long-Term Power Procurement Scheduling Method for Smart-Grid Powered Communication Systems. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 2882-2892	9.6	5
480	An Innovative Heuristic Algorithm for IoT-Enabled Smart Homes for Developing Countries. <i>IEEE Access</i> , 2018 , 6, 15550-15575	3.5	29
479	Emerging Trends, Issues, and Challenges in Big Data and Its Implementation toward Future Smart Cities: Part 2 2018 , 56, 76-77		4
478	Big Data Mining of Users Energy Consumption Patterns in the Wireless Smart Grid. <i>IEEE Wireless Communications</i> , 2018 , 25, 84-89	13.4	26
477	Efficient Spectrum Availability Information Recovery for Wideband DSA Networks: A Weighted Compressive Sampling Approach. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 2162-2172	9.6	22
476	Multiple Moving Targets Surveillance Based on a Cooperative Network for Multi-UAV. <i>IEEE Communications Magazine</i> , 2018 , 56, 82-89	9.1	106
475	Privacy in the Internet of Things for Smart Healthcare. <i>IEEE Communications Magazine</i> , 2018 , 56, 38-44	9.1	66
474	Caching in Information-Centric Networking: Strategies, Challenges, and Future Research Directions. <i>IEEE Communications Surveys and Tutorials</i> , 2018 , 20, 1443-1474	37.1	79
473	LTE-U and Wi-Fi Coexistence Algorithm Based on Q-Learning in Multi-Channel. <i>IEEE Access</i> , 2018 , 6, 136	64 4.5 136	552 ₇
472	Edge Computing in the Industrial Internet of Things Environment: Software-Defined-Networks-Based Edge-Cloud Interplay 2018 , 56, 44-51		206
471	File-Centric Multi-Key Aggregate Keyword Searchable Encryption for Industrial Internet of Things. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 3648-3658	11.9	55
470	Vehicle Tracking Using Surveillance With Multimodal Data Fusion. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2018 , 19, 2353-2361	6.1	24
469	Random Access Preamble Design and Detection for Mobile Satellite Communication Systems. <i>IEEE Journal on Selected Areas in Communications</i> , 2018 , 36, 280-291	14.2	21

468	Towards Dynamic Coordination Among Home Appliances Using Multi-Objective Energy Optimization for Demand Side Management in Smart Buildings. <i>IEEE Access</i> , 2018 , 6, 19509-19529	3.5	95
467	Imminent Communication Technologies for Smart Communities: Part 1 2018 , 56, 76-76		1
466	Mutual Heterogeneous Signcryption Schemes for 5G Network Slicings. <i>IEEE Access</i> , 2018 , 6, 7854-7863	3.5	18
465	Bus-Trajectory-Based Street-Centric Routing for Message Delivery in Urban Vehicular Ad Hoc Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 7550-7563	6.8	48
464	Mapping-Varied Spatial Modulation for Physical Layer Security: Transmission Strategy and Secrecy Rate. <i>IEEE Journal on Selected Areas in Communications</i> , 2018 , 36, 877-889	14.2	27
463	Transmission power adaption scheme for improving IoV awareness exploiting: evaluation weighted matrix based on piggybacked information. <i>Computer Networks</i> , 2018 , 137, 147-159	5.4	11
462	Privacy-friendly and efficient secure communication framework for V2G networks. <i>IET Communications</i> , 2018 , 12, 304-309	1.3	10
461	Chain-based big data access control infrastructure. <i>Journal of Supercomputing</i> , 2018 , 74, 4945-4964	2.5	18
460	Mixed RF/FSO Cooperative Relaying Systems With Co-Channel Interference. <i>IEEE Transactions on Communications</i> , 2018 , 66, 4014-4027	6.9	41
459	Aggregate Hardware Impairments Over Mixed RF/FSO Relaying Systems With Outdated CSI. <i>IEEE Transactions on Communications</i> , 2018 , 66, 1110-1123	6.9	33
458	Privacy-Preserving DDoS Attack Detection Using Cross-Domain Traffic in Software Defined Networks. <i>IEEE Journal on Selected Areas in Communications</i> , 2018 , 36, 628-643	14.2	69
457	Energy-Efficient Beamforming for 3.5 GHz 5G Cellular Networks based on 3D Spatial Channel Characteristics. <i>Computer Communications</i> , 2018 , 121, 59-70	5.1	9
456	. IEEE Communications Magazine, 2018 , 56, 198-204	9.1	12
455	An Energy-Efficient VM Prediction and Migration Framework for Overcommitted Clouds. <i>IEEE Transactions on Cloud Computing</i> , 2018 , 6, 955-966	3.3	27
454	. IEEE Internet of Things Journal, 2018 , 5, 624-635	10.7	193
453	. IEEE Transactions on Mobile Computing, 2018 , 17, 1383-1396	4.6	20
452	Security in Mobile Edge Caching with Reinforcement Learning. <i>IEEE Wireless Communications</i> , 2018 , 25, 116-122	13.4	126
451	Joint Interference Management in Ultra-Dense Small-Cell Networks: A Multi-Domain Coordination Perspective. <i>IEEE Transactions on Communications</i> , 2018 , 66, 5470-5481	6.9	25

450	The Identification of Secular Variation in IoT Based on Transfer Learning 2018,		4
449	Imminent Communication Technologies for Smart Communities: Part 2. <i>IEEE Communications Magazine</i> , 2018 , 56, 80-81	9.1	56
448	Checking Function-Level Kernel Control Flow Integrity for Cloud Computing. <i>IEEE Access</i> , 2018 , 6, 4185	6-44 86	551
447	An Efficient Anonymous Authentication Scheme for Internet of Vehicles 2018,		19
446	Reinforcement learningBased QoS/QoE-aware service function chaining in software-driven 5G slices. <i>Transactions on Emerging Telecommunications Technologies</i> , 2018 , 29, e3477	1.9	18
445	. IEEE Access, 2018 , 6, 36825-36833	3.5	54
444	Real-Time Behavior Analysis and Identification for Android Application. <i>IEEE Access</i> , 2018 , 6, 38041-380	1 53 .5	7
443	Symmetric Encryption Relying on Chaotic Henon System for Secure Hardware-Friendly Wireless Communication of Implantable Medical Systems. <i>Journal of Sensor and Actuator Networks</i> , 2018 , 7, 21	3.8	6
442	Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks. <i>Sensors</i> , 2018 , 18,	3.8	10
441	A Performance Analysis Model of TCP over Multiple Heterogeneous Paths for 5G Mobile Services. <i>Sustainability</i> , 2018 , 10, 1337	3.6	2
440	HEVC Lossless Compression Coding Based on Hadamard Butterfly Transformation. <i>Lecture Notes in Computer Science</i> , 2018 , 606-621	0.9	
439	Multi-Layer Perceptron Model on Chip for Secure Diabetic Treatment. <i>IEEE Access</i> , 2018 , 6, 44718-4473	0 3.5	16
438	When Mobile Crowd Sensing Meets UAV: Energy-Efficient Task Assignment and Route Planning. <i>IEEE Transactions on Communications</i> , 2018 , 66, 5526-5538	6.9	150
437	Energy Management With a World-Wide Adaptive Thermostat Using Fuzzy Inference System. <i>IEEE Access</i> , 2018 , 6, 33489-33502	3.5	10
436	. IEEE Communications Magazine, 2018 , 56, 136-141	9.1	85
435	Security in the Internet of Things Supported by Mobile Edge Computing. <i>IEEE Communications Magazine</i> , 2018 , 56, 56-61	9.1	84
434	FPAN: Fine-grained and progressive attention localization network for data retrieval. <i>Computer Networks</i> , 2018 , 143, 98-111	5.4	3
433	AOA-Based Three-Dimensional Multi-Target Localization in Industrial WSNs for LOS Conditions. <i>Sensors</i> , 2018 , 18,	3.8	9

432	. IEEE Access, 2018 , 6, 77077-77096	3.5	77
431	Discovering communities of malapps on Android-based mobile cyber-physical systems. <i>Ad Hoc Networks</i> , 2018 , 80, 104-115	4.8	12
430	A secure client-side framework for protecting the privacy of health data stored on the cloud 2018 ,		2
429	Deep Learning for IoT Big Data and Streaming Analytics: A Survey. <i>IEEE Communications Surveys and Tutorials</i> , 2018 , 20, 2923-2960	37.1	574
428	A high-performance virtual machine filesystem monitor in cloud-assisted cognitive IoT. <i>Future Generation Computer Systems</i> , 2018 , 88, 209-219	7.5	4
427	SVCC-HSR: Providing Secure Vehicular Cloud Computing for Intelligent High-Speed Rail. <i>IEEE</i> Network, 2018 , 32, 64-71	11.4	13
426	PRIF: A Privacy-Preserving Interest-Based Forwarding Scheme for Social Internet of Vehicles. <i>IEEE Internet of Things Journal</i> , 2018 , 5, 2457-2466	10.7	33
425	Towards Energy Saving in Computational Clouds: Taxonomy, Review, and Open Challenges. <i>IEEE Access</i> , 2018 , 6, 29407-29418	3.5	12
424	5G D2D Networks: Techniques, Challenges, and Future Prospects. <i>IEEE Systems Journal</i> , 2018 , 12, 3970	-3.29.834	160
423	AirMAP: Scalable Spectrum Occupancy Recovery Using Local Low-Rank Matrixapproximation 2018,		2
422	CR-NOMA Based Interference Mitigation Scheme for 5G Femtocells Users 2018 ,		22
421	V-Chain: A Blockchain-Based Car Lease Platform 2018 ,		3
420	Classification of Small UAVs Based on Auxiliary Classifier Wasserstein GANs 2018,		19
419	A Bignum Network Coding Scheme for Multipath Transmission in Vehicular Networks 2018 ,		2
418	2018,		4
417	2018,		3
416	vFAC: Fine-Grained Access Control with Versatility for Cloud Storage 2018,		3
415	BPDS: A Blockchain Based Privacy-Preserving Data Sharing for Electronic Medical Records 2018 ,		75

(2018-2018)

414	Congestion Game With Link Failures for Network Selection in High-Speed Vehicular Networks. <i>IEEE Access</i> , 2018 , 6, 76165-76175	3.5	5
413	A Traceable Concurrent Data Anonymous Transmission Scheme for Heterogeneous VANETs 2018 ,		1
412	CrossRec: Cross-Domain Recommendations Based on Social Big Data and Cognitive Computing. <i>Mobile Networks and Applications</i> , 2018 , 23, 1610-1623	2.9	11
411	Salt Generation for Hashing Schemes based on ECG readings for Emergency Access to Implantable Medical Devices 2018 ,		1
410	2018,		8
409	Blockchain-Based Mobile Edge Computing Framework for Secure Therapy Applications. <i>IEEE Access</i> , 2018 , 6, 72469-72478	3.5	90
408	Deciding Your Own Anonymity: User-Oriented Node Selection in I2P. IEEE Access, 2018, 6, 71350-71359	3.5	4
407	Privacy and Security Issues in Online Social Networks. Future Internet, 2018, 10, 114	3.3	30
406	Fog-assisted Congestion Avoidance Scheme for Internet of Vehicles 2018,		4
405	PROS: A Privacy-Preserving Route-Sharing Service via Vehicular Fog Computing. <i>IEEE Access</i> , 2018 , 6, 66188-66197	3.5	15
404	Networked Data Transaction in Mobile Networks: A Prediction-based Approach Using Auction 2018 ,		3
403	Vehicle-Type Detection Based on Compressed Sensing and Deep Learning in Vehicular Networks. <i>Sensors</i> , 2018 , 18,	3.8	14
402	KCLP: A k-Means Cluster-Based Location Privacy Protection Scheme in WSNs for IoT. <i>IEEE Wireless Communications</i> , 2018 , 25, 84-90	13.4	39
401	Information-Centric Network-Based Vehicular Communications: Overview and Research Opportunities. <i>Sensors</i> , 2018 , 18,	3.8	29
400	. IEEE Access, 2018 , 6, 74648-74659	3.5	3
399	Auction Design and Analysis for SDN-Based Traffic Offloading in Hybrid Satellite-Terrestrial Networks. <i>IEEE Journal on Selected Areas in Communications</i> , 2018 , 36, 2202-2217	14.2	77
398	MDBV: Monitoring Data Batch Verification for Survivability of Internet of Vehicles. <i>IEEE Access</i> , 2018 , 6, 50974-50983	3.5	6
397	Attention-mechanism-based tracking method for intelligent Internet of vehicles. <i>International Journal of Distributed Sensor Networks</i> , 2018 , 14, 155014771880594	1.7	4

396	DTW based Authentication for Wireless Medical Device Security 2018,		5
395	Monopolistic Models for Resource Allocation: A Probabilistic Reinforcement Learning Approach. <i>IEEE Access</i> , 2018 , 6, 49721-49731	3.5	6
394	. IEEE Communications Magazine, 2018 , 56, 92-93	9.1	19
393	LCD: Low Latency Command Dissemination for a Platoon of Vehicles 2018,		8
392	Online Internet Traffic Monitoring and DDoS Attack Detection Using Big Data Frameworks 2018,		4
391	Cognitive Data Allocation for Auction-based Data Transaction in Mobile Networks 2018,		5
390	Classification for Imperfect EEG Epileptic Seizure in IoT applications: A Comparative Study 2018,		6
389	A Simple Approach for Securing IoT Data Transmitted over Multi-RATs 2018,		3
388	Time-Dependent Pricing for On-Demand Bandwidth Slicing in Software Defined Networks 2018,		4
387	Scratch Analysis Tool(SAT): A Modern Scratch Project Analysis Tool based on ANTLR to Assess Computational Thinking Skills 2018 ,		7
386	Improving flow delivery with link available time prediction in software-defined high-speed vehicular networks. <i>Computer Networks</i> , 2018 , 145, 165-174	5.4	6
385	Lclean: A Plausible Approach to Individual Trajectory Data Sanitization. <i>IEEE Access</i> , 2018 , 6, 30110-301	16.5	9
384	Assured Data Deletion With Fine-Grained Access Control for Fog-Based Industrial Applications. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 4538-4547	11.9	45
383	Vanets Meet Autonomous Vehicles: Multimodal Surrounding Recognition Using Manifold Alignment. <i>IEEE Access</i> , 2018 , 6, 29026-29040	3.5	14
382	5G Optimized Caching and Downlink Resource Sharing for Smart Cities. <i>IEEE Access</i> , 2018 , 6, 31457-314	6§ .5	37
381	Energy-aware interference management for ultra-dense multi-tier HetNets: Architecture and technologies. <i>Computer Communications</i> , 2018 , 127, 30-35	5.1	2
380	Achieving Energy Efficiency and Sustainability in Edge/Fog Deployment 2018, 56, 20-21		6
379	Real-Time Intersection-Based Segment Aware Routing Algorithm for Urban Vehicular Networks. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2018 , 19, 2125-2141	6.1	38

378	Security Mechanisms to Defend against New Attacks on Software-Defined Radio 2018,		2
377	A Rule Verification System for Smart Buildings. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2017 , 5, 367-379	4.1	15
376	Security Threats to Hadoop: Data Leakage Attacks and Investigation. <i>IEEE Network</i> , 2017 , 31, 67-71	11.4	14
375	Enabling Mobile and Wireless Technologies for Smart Cities 2017 , 55, 74-75		14
374	Region based cooperative routing in underwater wireless sensor networks. <i>Journal of Network and Computer Applications</i> , 2017 , 92, 31-41	7.9	28
373	Social-Aware Resource Allocation and Optimization for D2D Communication. <i>IEEE Wireless Communications</i> , 2017 , 24, 122-129	13.4	34
372	Internet of Things: Part 2 2017 , 55, 114-115		6
371	Resource management for future mobile networks: Architecture and technologies. <i>Computer Networks</i> , 2017 , 129, 392-398	5.4	10
370	Software-Defined-Networking-Enabled Traffic Anomaly Detection and Mitigation. <i>IEEE Internet of Things Journal</i> , 2017 , 4, 1890-1898	10.7	25
369	Enabling Mobile and Wireless Technologies for Smart Cities: Part 3 2017 , 55, 24-25		
368	Deep Feature Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network. <i>IEEE Transactions on Big Data</i> , 2017 , 1-1	3.2	128
367			
	Internet of Things Architecture: Recent Advances, Taxonomy, Requirements, and Open Challenges. <i>IEEE Wireless Communications</i> , 2017 , 24, 10-16	13.4	310
366		13.4 5·4	310
366 365	A robust authentication scheme based on physical-layer phase noise fingerprint for emerging		
	A robust authentication scheme based on physical-layer phase noise fingerprint for emerging wireless networks. <i>Computer Networks</i> , 2017 , 128, 164-171 Access Control Schemes for Implantable Medical Devices: A Survey. <i>IEEE Internet of Things Journal</i> ,	5.4	13
365	A robust authentication scheme based on physical-layer phase noise fingerprint for emerging wireless networks. <i>Computer Networks</i> , 2017 , 128, 164-171 Access Control Schemes for Implantable Medical Devices: A Survey. <i>IEEE Internet of Things Journal</i> , 2017 , 4, 1272-1283 Toward Delay-Tolerant Flexible Data Access Control for Smart Grid With Renewable Energy	5.4	13
365 364	A robust authentication scheme based on physical-layer phase noise fingerprint for emerging wireless networks. Computer Networks, 2017, 128, 164-171 Access Control Schemes for Implantable Medical Devices: A Survey. IEEE Internet of Things Journal, 2017, 4, 1272-1283 Toward Delay-Tolerant Flexible Data Access Control for Smart Grid With Renewable Energy Resources. IEEE Transactions on Industrial Informatics, 2017, 13, 3216-3225 P2P-based resource allocation with coalitional game for D2D networks. Pervasive and Mobile	5·4 10.7 11.9	13 31 22

360	Cyber Security Analysis and Protection of Wireless Sensor Networks for Smart Grid Monitoring. <i>IEEE Wireless Communications</i> , 2017 , 24, 98-103	13.4	28
359	Internet of Things: Part 3 2017 , 55, 108-109		1
358	Enabling Mobile and Wireless Technologies for Smart Cities: Part 2 2017 , 55, 12-13		4
357	Mobile anchor nodes path planning algorithms using network-density-based clustering in wireless sensor networks. <i>Journal of Network and Computer Applications</i> , 2017 , 85, 64-75	7.9	23
356	. IEEE Transactions on Industrial Informatics, 2017 , 13, 2587-2596	11.9	70
355	Communication Security of Unmanned Aerial Vehicles. <i>IEEE Wireless Communications</i> , 2017 , 24, 134-139	13.4	82
354	Interference-Aware Energy Efficiency Maximization in 5G Ultra-Dense Networks. <i>IEEE Transactions on Communications</i> , 2017 , 65, 728-739	6.9	63
353	Extracting and Exploiting Inherent Sparsity for Efficient IoT Support in 5G: Challenges and Potential Solutions. <i>IEEE Wireless Communications</i> , 2017 , 24, 68-73	13.4	26
352	Systematization of Knowledge (SoK): A Systematic Review of Software-Based Web Phishing Detection. <i>IEEE Communications Surveys and Tutorials</i> , 2017 , 19, 2797-2819	37.1	37
351	Software-Defined Vehicular Networks: Architecture, Algorithms, and Applications: Part 2. <i>IEEE Communications Magazine</i> , 2017 , 55, 58-59	9.1	8
350	M2M Communications in 5G: State-of-the-Art Architecture, Recent Advances, and Research Challenges 2017 , 55, 194-201		68
349	Internet of Things: Part 4 2017 , 55, 14-15		
348	Reducing Data Center Energy Consumption Through Peak Shaving and Locked-In Energy Avoidance. <i>IEEE Transactions on Green Communications and Networking</i> , 2017 , 1, 551-562	4	8
347	The rise of ransomware and emerging security challenges in the Internet of Things. <i>Computer Networks</i> , 2017 , 129, 444-458	5.4	139
346	A review of security challenges, attacks and resolutions for wireless medical devices 2017,		13
345	Software-Defined Vehicular Networks: Architecture, Algorithms, and Applications: Part 1 2017 , 55, 78-7	9	9
344	MeDShare: Trust-Less Medical Data Sharing Among Cloud Service Providers via Blockchain. <i>IEEE Access</i> , 2017 , 5, 14757-14767	3.5	536
343	Buffer size and link quality based cooperative relay selection in wireless networks 2017,		8

342	Performance analysis of a buffer-aided incremental relaying in cooperative wireless network 2017,		4	
341	Process state synchronization for mobility support in mobile cloud computing 2017,		13	
340	Big data analytics of geosocial media for planning and real-time decisions 2017,		8	
339	AutoPatchDroid: A framework for patching inter-app vulnerabilities in android application 2017 ,		2	
338	Hybrid Rayleigh and Double-Weibull over impaired RF/FSO system with outdated CSI 2017,		11	
337	Estimating the number of sources in white Gaussian noise: simple eigenvalues based approaches. <i>IET Signal Processing</i> , 2017 , 11, 663-673	1.7	6	
336	Smart Cities: A Survey on Data Management, Security, and Enabling Technologies. <i>IEEE Communications Surveys and Tutorials</i> , 2017 , 19, 2456-2501	37.1	264	
335	Win-Win Security Approaches for Smart Grid Communications Networks. <i>IEEE Network</i> , 2017 , 31, 122-1	28 1.4	4	
334	Optimizing Joint Data and Power Transfer in Energy Harvesting Multiuser Wireless Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 10989-11000	6.8	8	
333	. IEEE Transactions on Communications, 2017 , 1-1	6.9	22	
332	Softwarization of Internet of Things Infrastructure for Secure and Smart Healthcare. <i>Computer</i> , 2017 , 50, 74-79	1.6	66	
331	5G Millimeter-Wave Antenna Array: Design and Challenges. <i>IEEE Wireless Communications</i> , 2017 , 24, 10	16-1314	143	
330	Utility function design for strategic radio resource management games: An overview, taxonomy, and research challenges. <i>Transactions on Emerging Telecommunications Technologies</i> , 2017 , 28, e3128	1.9	3	
329	. IEEE Communications Surveys and Tutorials, 2017 , 19, 303-324	37.1	91	
328	A lightweight live memory forensic approach based on hardware virtualization. <i>Information Sciences</i> , 2017 , 379, 23-41	7.7	55	
327	VANETs Meet Autonomous Vehicles: A Multimodal 3D Environment Learning Approach 2017 ,		8	
	VANETS Meet Autonomous Venicles. A Mutchhouat 3D Environment Learning Approach 2011,			
326	DLRT: Deep Learning Approach for Reliable Diabetic Treatment 2017,		6	

324	Wii: Device-Free Passive Identity Identification via WiFi Signals 2017,		12
323	Exploiting wideband spectrum occupancy heterogeneity for weighted compressive spectrum sensing 2017 ,		4
322	Mixed RF/FSO Relaying Systems with Hardware Impairments 2017,		9
321	A Performance Analysis Model for TCP over Multiple Heterogeneous Paths in 5G Networks 2017 ,		1
320	New Plain-Text Authentication Secure Scheme for Implantable Medical Devices with Remote Control 2017 ,		8
319	Light-weight encryption of wireless communication for implantable medical devices using henon chaotic system (invited paper) 2017 ,		3
318	Emerging Trends, Issues, and Challenges in Big Data and Its Implementation toward Future Smart Cities 2017 , 55, 16-17		5
317	Energy-Efficient Caching for Mobile Edge Computing in 5G Networks. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 557	2.6	30
316	Joint data and power transfer optimization for energy harvesting wireless networks 2016,		7
315	Quantifying caching effects in urban VANETs 2016 ,		1
			1
314	Secure data access for wireless body sensor networks 2016 ,		3
314	Secure data access for wireless body sensor networks 2016 , Swinging with the Jet Set: Analysis of Electromagnetic Fields Inside Jet EnginesFrom Numerical and Experimental Analysis to Statistical Analysis. <i>IEEE Microwave Magazine</i> , 2016 , 17, 61-72	1.2	
	Swinging with the Jet Set: Analysis of Electromagnetic Fields Inside Jet EnginesFrom Numerical	1.2	3
313	Swinging with the Jet Set: Analysis of Electromagnetic Fields Inside Jet EnginesFrom Numerical and Experimental Analysis to Statistical Analysis. <i>IEEE Microwave Magazine</i> , 2016 , 17, 61-72 Green Routing Protocols for Wireless Multimedia Sensor Networks. <i>IEEE Wireless Communications</i> ,		3
313	Swinging with the Jet Set: Analysis of Electromagnetic Fields Inside Jet EnginesFrom Numerical and Experimental Analysis to Statistical Analysis. <i>IEEE Microwave Magazine</i> , 2016 , 17, 61-72 Green Routing Protocols for Wireless Multimedia Sensor Networks. <i>IEEE Wireless Communications</i> , 2016 , 23, 140-146 Internet-of-things-based smart environments: state of the art, taxonomy, and open research	13.4	3 3 53
313 312 311	Swinging with the Jet Set: Analysis of Electromagnetic Fields Inside Jet EnginesFrom Numerical and Experimental Analysis to Statistical Analysis. <i>IEEE Microwave Magazine</i> , 2016 , 17, 61-72 Green Routing Protocols for Wireless Multimedia Sensor Networks. <i>IEEE Wireless Communications</i> , 2016 , 23, 140-146 Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. <i>IEEE Wireless Communications</i> , 2016 , 23, 10-16	13.4	3 3 53 225
313 312 311 310	Swinging with the Jet Set: Analysis of Electromagnetic Fields Inside Jet EnginesFrom Numerical and Experimental Analysis to Statistical Analysis. <i>IEEE Microwave Magazine</i> , 2016 , 17, 61-72 Green Routing Protocols for Wireless Multimedia Sensor Networks. <i>IEEE Wireless Communications</i> , 2016 , 23, 140-146 Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. <i>IEEE Wireless Communications</i> , 2016 , 23, 10-16 Study of Vehicular Cloud during traffic congestion 2016 ,	13.4	3 3 53 225 5

(2016-2016)

306	RF Energy Harvesting Communications: Recent Advances and Research Issues. <i>Studies in Systems, Decision and Control</i> , 2016 , 339-363	0.8	3
305	2016 , 54, 20-25		17
304	Enabling Green Wireless Networking With Device-to-Device Links: A Joint Optimization Approach. <i>IEEE Transactions on Wireless Communications</i> , 2016 , 15, 2770-2779	9.6	8
303	A Survey on Mobile Anchor Node Assisted Localization in Wireless Sensor Networks. <i>IEEE Communications Surveys and Tutorials</i> , 2016 , 18, 2220-2243	37.1	261
302	Efficient Virtual Network Embedding With Backtrack Avoidance for Dynamic Wireless Networks. <i>IEEE Transactions on Wireless Communications</i> , 2016 , 15, 2669-2683	9.6	19
301	Sink mobility aware energy-efficient network integrated super heterogeneous protocol for WSNs. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2016 , 2016,	3.2	14
300	Distributed Learning-Based Cross-Layer Technique for Energy-Efficient Multicarrier Dynamic Spectrum Access With Adaptive Power Allocation. <i>IEEE Transactions on Wireless Communications</i> , 2016 , 15, 1665-1674	9.6	18
299	. IEEE Internet of Things Journal, 2016 , 3, 327-338	10.7	49
298	. IEEE Transactions on Wireless Communications, 2016 , 15, 1364-1376	9.6	57
297	Market Model for Resource Allocation in Emerging Sensor Networks with Reinforcement Learning. <i>Sensors</i> , 2016 , 16,	3.8	3
296	Optimal Energy Exchange Scheme for Energy Efficient Hybrid-Powered Communication Systems 2016 ,		1
295	QoE-Oriented Resource Efficiency for 5G Two-Tier Cellular Networks: A FemtoCaching Framework 2016 ,		9
294	Advanced Activity-Aware Multi-Channel Operations 1609.4 in VANETs for Vehicular Clouds 2016,		10
293	Hadoop Based Real-Time Intrusion Detection for High-Speed Networks 2016 ,		11
292	Modeling induction and routing to monitor hospitalized patients in multi-hop mobility-aware body area sensor networks. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2016 , 2016,	3.2	5
291	Partial Relay Selection for Hybrid RF/FSO Systems with Hardware Impairments 2016,		14
290	Internet of Things: Part 1 [Guest editorial] 2016 , 54, 12-13		1
289	High-Speed Network Traffic Analysis: Detecting VoIP Calls in Secure Big Data Streaming 2016,		1

288	Recent advances in green industrial networking [Guest Editorial] 2016 , 54, 14-15		2
287	Securing Cognitive Radio Networks against Primary User Emulation Attacks. <i>IEEE Network</i> , 2016 , 30, 62-69	11.4	17
286	Software-Defined Network Forensics: Motivation, Potential Locations, Requirements, and Challenges. <i>IEEE Network</i> , 2016 , 30, 6-13	11.4	23
285	Incentives for safe driving in VANET 2016 ,		2
284	Peak shaving through optimal energy storage control for data centers 2016 ,		8
283	Unleashing the secure potential of the wireless physical layer: Secret key generation methods. <i>Physical Communication</i> , 2016 , 19, 1-10	2.2	21
282	Relay selection schemes to minimise outage in wireless powered communication networks. <i>IET Signal Processing</i> , 2016 , 10, 203-209	1.7	7
281	Low-Complexity Opportunistic Transmission Schemes for Multi-User Multi-Relay Asymmetric Bidirectional Relaying Networks. <i>IEEE Transactions on Wireless Communications</i> , 2016 , 15, 5167-5181	9.6	8
280	. IEEE Wireless Communications, 2016 , 23, 64-71	13.4	55
279	. IEEE Transactions on Wireless Communications, 2016 , 15, 4754-4764	9.6	22
279 278	. <i>IEEE Transactions on Wireless Communications</i> , 2016 , 15, 4754-4764 Network security analyzing and modeling based on Petri net and Attack tree for SDN 2016 ,	9.6	22
		9.6	
	Network security analyzing and modeling based on Petri net and Attack tree for SDN 2016 ,	9.6	5
278 277	Network security analyzing and modeling based on Petri net and Attack tree for SDN 2016 , Network function virtualization in 5G 2016 , 54, 84-91		5
278 277 276	Network security analyzing and modeling based on Petri net and Attack tree for SDN 2016, Network function virtualization in 5G 2016, 54, 84-91 . IEEE Communications Surveys and Tutorials, 2016, 1-1 Advanced spectrum sharing in 5G cognitive heterogeneous networks. IEEE Wireless Communications	37.1	5 126 47 66
278 277 276 275	Network security analyzing and modeling based on Petri net and Attack tree for SDN 2016, Network function virtualization in 5G 2016, 54, 84-91 . IEEE Communications Surveys and Tutorials, 2016, 1-1 Advanced spectrum sharing in 5G cognitive heterogeneous networks. IEEE Wireless Communications, 2016, 23, 94-101 Cloud of Things for Sensing-as-a-Service: Architecture, Algorithms, and Use Case. IEEE Internet of	37.1	5 126 47 66
278 277 276 275	Network security analyzing and modeling based on Petri net and Attack tree for SDN 2016, Network function virtualization in 5G 2016, 54, 84-91 . IEEE Communications Surveys and Tutorials, 2016, 1-1 Advanced spectrum sharing in 5G cognitive heterogeneous networks. IEEE Wireless Communications, 2016, 23, 94-101 Cloud of Things for Sensing-as-a-Service: Architecture, Algorithms, and Use Case. IEEE Internet of Things Journal, 2016, 3, 1099-1112 Delay-Aware Energy Optimization for Flooding in Duty-Cycled Wireless Sensor Networks. IEEE	37.1 13.4 10.7	5 126 47 66 38

(2015-2016)

270	Understanding the impact of network structure on propagation dynamics based on mobile big data 2016 ,		4
269	Cooperative Secondary Users selection in Cognitive Radio Ad Hoc Networks 2016 ,		4
268	2016,		2
267	Energy efficient antenna selection for a MIMO relay using RF energy harvesting 2016,		3
266	Efficient Rule Engine for Smart Building Systems. <i>IEEE Transactions on Computers</i> , 2015 , 64, 1658-1669	2.5	23
265	Software-defined networking security: pros and cons 2015 , 53, 73-79		77
264	Interference-based optimal power-efficient access scheme for cognitive radio networks 2015,		1
263	Survey on energy harvesting wireless communications: Challenges and opportunities for radio resource allocation. <i>Computer Networks</i> , 2015 , 88, 234-248	5.4	43
262	. IEEE Communications Surveys and Tutorials, 2015 , 17, 2347-2376	37.1	3882
261	. IEEE Transactions on Network and Service Management, 2015 , 12, 377-391	4.8	93
260	Security and privacy in emerging networks: Part 1 [Guest Editorial] 2015 , 53, 18-19		3
259	Automatic Modulation Classification for Low SNR Digital Signal in Frequency-Selective Fading Environments. <i>Wireless Personal Communications</i> , 2015 , 84, 1891-1906	1.9	7
258	Large-scale cognitive cellular systems: resource management overview 2015 , 53, 44-51		21
257	. IEEE Transactions on Wireless Communications, 2015 , 14, 5147-5155	9.6	6
256	. IEEE Transactions on Wireless Communications, 2015 , 14, 3877-3887	9.6	11
255	. IEEE Transactions on Mobile Computing, 2015 , 14, 2447-2459	4.6	86
254	User privacy and data trustworthiness in mobile crowd sensing. <i>IEEE Wireless Communications</i> , 2015 , 22, 28-34	13.4	70
253	Mobile application security: malware threats and defenses. <i>IEEE Wireless Communications</i> , 2015 , 22, 138	B-113 1.4	52

252	. <i>IEEE Network</i> , 2015 , 29, 56-61	11.4	73
251	Energy-aware rate and description allocation optimized video streaming for mobile D2D communications 2015 ,		15
250	Toward better horizontal integration among IoT services 2015 , 53, 72-79		112
249	. IEEE Network, 2015 , 29, 24-30	11.4	8
248	Game theoretic data privacy preservation: Equilibrium and pricing 2015,		9
247	A Fatigue Measuring Protocol for Wireless Body Area Sensor Networks. <i>Journal of Medical Systems</i> , 2015 , 39, 193	5.1	6
246	BEC: A novel routing protocol for balanced energy consumption in Wireless Body Area Networks 2015 ,		17
245	Securing cognitive radio networks against primary user emulation attacks. <i>IEEE Network</i> , 2015 , 29, 68-7	7411.4	28
244	Comparative simulation for physical layer key generation methods 2015,		3
243	2015 , 53, 200-206		10
243	Performance Evaluation of IEEE 802.15.4 Nonbeacon-Enabled Mode for Internet of Vehicles. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2015 , 16, 3150-3159	6.1	10
	Performance Evaluation of IEEE 802.15.4 Nonbeacon-Enabled Mode for Internet of Vehicles. <i>IEEE</i>	6.1	
242	Performance Evaluation of IEEE 802.15.4 Nonbeacon-Enabled Mode for Internet of Vehicles. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2015 , 16, 3150-3159	6.1	
242	Performance Evaluation of IEEE 802.15.4 Nonbeacon-Enabled Mode for Internet of Vehicles. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2015 , 16, 3150-3159 Security and privacy in emerging networks: Part II [Guest Editorial] 2015 , 53, 40-41 An energy-efficient distributed clustering algorithm for heterogeneous WSNs. <i>Eurasip Journal on</i>		21
242 241 240	Performance Evaluation of IEEE 802.15.4 Nonbeacon-Enabled Mode for Internet of Vehicles. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2015 , 16, 3150-3159 Security and privacy in emerging networks: Part II [Guest Editorial] 2015 , 53, 40-41 An energy-efficient distributed clustering algorithm for heterogeneous WSNs. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2015 , 2015,	3.2	21 4 30
242 241 240 239	Performance Evaluation of IEEE 802.15.4 Nonbeacon-Enabled Mode for Internet of Vehicles. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2015 , 16, 3150-3159 Security and privacy in emerging networks: Part II [Guest Editorial] 2015 , 53, 40-41 An energy-efficient distributed clustering algorithm for heterogeneous WSNs. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2015 , 2015, . <i>IEEE Transactions on Mobile Computing</i> , 2015 , 14, 1876-1887 Software-Defined Networking for RSU Clouds in Support of the Internet of Vehicles. <i>IEEE Internet</i>	3.2	21 4 30 9
242 241 240 239 238	Performance Evaluation of IEEE 802.15.4 Nonbeacon-Enabled Mode for Internet of Vehicles. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2015 , 16, 3150-3159 Security and privacy in emerging networks: Part II [Guest Editorial] 2015 , 53, 40-41 An energy-efficient distributed clustering algorithm for heterogeneous WSNs. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2015 , 2015, . <i>IEEE Transactions on Mobile Computing</i> , 2015 , 14, 1876-1887 Software-Defined Networking for RSU Clouds in Support of the Internet of Vehicles. <i>IEEE Internet of Things Journal</i> , 2015 , 2, 133-144	3.2 4.6	21 4 30 9

(2015-2015)

234	Stochastic learning automata-based channel selection in cognitive radio/dynamic spectrum access for WiMAX networks. <i>International Journal of Communication Systems</i> , 2015 , 28, 801-817	1.7	5
233	. IEEE Transactions on Vehicular Technology, 2015 , 64, 2001-2014	6.8	2
232	Quality of Sustainability Optimization Design for Mobile Ad Hoc Networks in Disaster Areas 2015,		3
231	Haddle: A Framework for Investigating Data Leakage Attacks in Hadoop 2015 ,		8
230	2015,		2
229	Online Assignment and Placement of Cloud Task Requests with Heterogeneous Requirements 2015 ,		4
228	. IEEE Transactions on Vehicular Technology, 2015 , 64, 1218-1229	6.8	55
227	Handover authentication for mobile networks: security and efficiency aspects. <i>IEEE Network</i> , 2015 , 29, 96-103	11.4	45
226	Cooperative joint power splitting and allocation approach for simultaneous energy delivery and data transfer 2015 ,		1
225	Conformal circular patch antenna array design for use in jet engines 2015,		1
224	Routing protocols for underwater wireless sensor networks 2015 , 53, 72-78		112
223	Cloud of Things for Sensing as a Service: Sensing Resource Discovery and Virtualization 2015 ,		19
222	Efficient datacenter resource utilization through cloud resource overcommitment 2015,		30
221	Dynamic power pricing using distributed resource allocation for large-scale DSA systems 2015,		3
220	On the study of field uniformity inside jet engines 2015 ,		1
219	Copy limited flooding over opportunistic networks. <i>Journal of Network and Computer Applications</i> , 2015 , 58, 94-107	7.9	5
218	Power allocation analysis for dynamic power utility in cognitive radio systems 2015,		4
217	Interference Aware Inverse EEDBR protocol for Underwater WSNs 2015 ,		7

216	A novel mechanism for restoring actor connected coverage in wireless sensor and actor networks 2015 ,		7
215	Malicious-Proof and Fair Credit-Based Resource Allocation Techniques for DSA Systems. <i>IEEE Transactions on Wireless Communications</i> , 2015 , 14, 606-615	9.6	3
214	A Distributed Gateway Selection Algorithm for UAV Networks. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2015 , 3, 22-33	4.1	34
213	Millimeter-wave multimedia communications: challenges, methodology, and applications 2015 , 53, 232	-238	50
212	Asynchronous flow scheduling for green ambient assisted living communications 2015 , 53, 64-70		5
211	. IEEE Transactions on Wireless Communications, 2015 , 14, 389-398	9.6	14
21 0	A Survey on Energy Harvesting and Integrated Data Sharing in Wireless Body Area Networks. <i>International Journal of Distributed Sensor Networks</i> , 2015 , 2015, 1-17	1.7	12
209	Distributed Fair Spectrum Assignment for Large-Scale Wireless DSA Networks. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2015 , 631-642	0.2	6
208	. IEEE Journal on Selected Areas in Communications, 2014 , 32, 760-772	14.2	30
207	. IEEE Transactions on Vehicular Technology, 2014 , 63, 1402-1407	6.8	18
206	Mobility prediction in telecom cloud using mobile calls. <i>IEEE Wireless Communications</i> , 2014 , 21, 26-32	13.4	27
205	Enhancing spectral-energy efficiency forLTE-advanced heterogeneous networks: a users social pattern perspective. <i>IEEE Wireless Communications</i> , 2014 , 21, 10-17	13.4	41
204	Overcoming user selfishness in DSA systems through credit-based resource allocation 2014,		3
203	Auditing cloud service level agreement on VM CPU speed 2014 ,		5
202	Limited Feedback Unitary Precoding for MIMO Full Stream Transmission. <i>IEEE Transactions on Vehicular Technology</i> , 2014 , 63, 4092-4096	6.8	5
201	Online multi-resource scheduling for minimum task completion time in cloud servers 2014,		5
200	. IEEE Wireless Communications, 2014 , 21, 110-116	13.4	6
199	Design and implementation of distributed dynamic spectrum allocation protocol 2014,		2

(2014-2014)

198	Joint mode selection, channel allocation and power assignment for green device-to-device communications 2014 ,		38
197	Auction-Based Relay Power Allocation: Pareto Optimality, Fairness, and Convergence. <i>IEEE Transactions on Communications</i> , 2014 , 62, 2249-2259	6.9	13
196	An adaptive route optimization scheme for nested mobile IPv6 NEMO environment 2014,		2
195	. IEEE Network, 2014 , 28, 74-80	11.4	30
194	. IEEE Transactions on Vehicular Technology, 2014 , 63, 2901-2915	6.8	8
193	. IEEE Network, 2014 , 28, 10-16	11.4	39
192	. IEEE Transactions on Communications, 2014 , 62, 2651-2664	6.9	42
191	. IEEE Transactions on Wireless Communications, 2014 , 13, 3196-3206	9.6	22
190	. IEEE Internet of Things Journal, 2014 , 1, 276-288	10.7	95
189	Secure and Efficient Data Transmission for Cluster-Based Wireless Sensor Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 750-761	3.7	93
188	2014,		15
187	Towards energy efficient relay placement and load balancing in future wireless networks 2014,		4
186	On the correlation analysis of electric field inside jet engine 2014 ,		2
185	Resources allocation for large-scale dynamic spectrum access system using particle filtering 2014 ,		6
184	BIRD-VNE: Backtrack-avoidance virtual network embedding in polynomial time 2014,		3
183	Distributed dynamic spectrum access with adaptive power allocation: Energy efficiency and cross-layer awareness 2014 ,		12
182	Verifying cloud service-level agreement by a third-party auditor. <i>Security and Communication Networks</i> , 2014 , 7, 492-502	1.9	15
181	Energy-efficient cloud resource management 2014 ,		26

180	5G wireless backhaul networks: challenges and research advances. <i>IEEE Network</i> , 2014 , 28, 6-11	11.4	385
179	RSU cloud and its resource management in support of enhanced vehicular applications 2014,		23
178	Trading wireless information and power transfer: Relay selection to minimize the outage probability 2014 ,		9
177	A proposed security scheme against Denial of Service attacks in cluster-based wireless sensor networks. <i>Security and Communication Networks</i> , 2014 , 7, 2542-2554	1.9	12
176	Joint physical-application layer security for wireless multimedia delivery 2014 , 52, 66-72		60
175	. IEEE Wireless Communications, 2013 , 20, 54-61	13.4	32
174	. IEEE Journal on Selected Areas in Communications, 2013, 31, 338-347	14.2	5
173	. IEEE Transactions on Vehicular Technology, 2013 , 62, 797-808	6.8	21
172	Impact of Channel Estimation Error on Bidirectional MABC-AF Relaying With Asymmetric Traffic Requirements. <i>IEEE Transactions on Vehicular Technology</i> , 2013 , 62, 1755-1769	6.8	27
171	On the statistical distribution of electric field inside jet engines 2013 ,		5
170	Carrier aggregation for LTE-advanced: uplink multiple access and transmission enhancement features. <i>IEEE Wireless Communications</i> , 2013 , 20, 101-108	13.4	21
169	A survey on communication infrastructure for micro-grids 2013 ,		21
168	. IEEE Transactions on Wireless Communications, 2013 , 12, 6488-6499	9.6	2
167	. IEEE Transactions on Wireless Communications, 2013 , 12, 3733-3745	9.6	43
166	Adaptive service function for system reward maximization under elastic traffic model 2013,		5
165	Social interaction increases capacity of wireless networks 2013 ,		10
164	. IEEE Transactions on Smart Grid, 2013 , 4, 99-110	10.7	49
163	. IEEE Transactions on Wireless Communications, 2013 , 12, 917-927	9.6	42

162	. IEEE Transactions on Wireless Communications, 2013 , 12, 4638-4646	9.6	21
161	A Two-Step Secure Localization for Wireless Sensor Networks. <i>Computer Journal</i> , 2013 , 56, 1154-1166	1.3	15
160	Opportunistic access for cooperative cognitive radio networks with requirement constraint 2013,		1
159	. IEEE Wireless Communications, 2013 , 20, 66-73	13.4	56
158	. IEEE Wireless Communications, 2013 , 20, 62-67	13.4	11
157	EM-Based Adaptive Frequency Domain Estimation of Doppler Shifts with CRLB Analysis for CDMA Systems. <i>IEEE Transactions on Communications</i> , 2012 , 60, 198-208	6.9	6
156	. IEEE Transactions on Communications, 2012 , 60, 2017-2028	6.9	5
155	2012 , 50, 53-61		65
154	. IEEE Transactions on Wireless Communications, 2012 , 11, 3058-3067	9.6	16
153	. IEEE Transactions on Wireless Communications, 2012 , 11, 2106-2115	9.6	25
152	Lightweight secure global time synchronization for Wireless Sensor Networks 2012,		10
151	A Novel P2P VoD Streaming Technique Integrating Localization and Congestion Awareness Strategies. <i>Mobile Networks and Applications</i> , 2012 , 17, 594-603	2.9	7
150	EM-MAC: An energy-aware multi-channel MAC protocol for multi-hop wireless networks 2012,		2
149	History based predictive routing in multi-lane delay tolerable VANETs 2012,		1
148	Optimal Pipeline Paging Load Balancing for Hierarchical Cellular Networks. <i>IEEE Transactions on Mobile Computing</i> , 2012 , 11, 1532-1544	4.6	1
147	Discovering influential users in micro-blog marketing with influence maximization mechanism 2012,		3
146	Cognitive transmission based on data priority classification in WSNs for Smart Grid 2012,		2
145	Dynamic cluster based price control and gateway management for VANETs 2012 ,		5

144	. IEEE Wireless Communications, 2012, 19, 30-37	13.4	41
143	A lightweight privacy-preserving protocol using chameleon hashing for secure vehicular communications 2012 ,		13
142	All-to-all throughput maximization in wireless relay networks with multiple packet reception 2012,		1
141	. IEEE Transactions on Wireless Communications, 2012 , 11, 3588-3597	9.6	6
140	NCAC-MAC: Network coding aware cooperative medium access control for wireless networks 2012,		9
139	Forced Spectrum Access Termination Probability Analysis under Restricted Channel Handoff. <i>Lecture Notes in Computer Science</i> , 2012 , 358-365	0.9	1
138	Multi-scale direct sequence ultra-wideband communications over time-dispersive channels. <i>IET Communications</i> , 2011 , 5, 1597-1606	1.3	2
137	. Journal of Communications and Networks, 2011 , 13, 95-101	4.1	3
136	2011 , 49, 44-52		300
135	. IEEE Transactions on Communications, 2011 , 59, 3192-3203	6.9	17
134	. IEEE Network, 2011 , 25, 6-14	11.4	182
133			
	. IEEE Wireless Communications, 2011 , 18, 38-45	13.4	7
132	A novel IEEE 802.11-based MAC protocol supporting cooperative communications. <i>International Journal of Communication Systems</i> , 2011 , 24, 1480-1495	13.4	7
	A novel IEEE 802.11-based MAC protocol supporting cooperative communications. <i>International</i>		7 20 9
132	A novel IEEE 802.11-based MAC protocol supporting cooperative communications. <i>International Journal of Communication Systems</i> , 2011 , 24, 1480-1495		
132	A novel IEEE 802.11-based MAC protocol supporting cooperative communications. <i>International Journal of Communication Systems</i> , 2011 , 24, 1480-1495 Mobile multimedia sensor networks: Architecture and routing 2011 , LMAT: Localization with a Mobile Anchor Node Based on Trilateration in Wireless Sensor Networks		9
132 131 130	A novel IEEE 802.11-based MAC protocol supporting cooperative communications. <i>International Journal of Communication Systems</i> , 2011 , 24, 1480-1495 Mobile multimedia sensor networks: Architecture and routing 2011 , LMAT: Localization with a Mobile Anchor Node Based on Trilateration in Wireless Sensor Networks 2011 ,	1.7	9 25

(2009-2010)

126	Failure Prediction Based on Multi-Scale Frequent Anomalous Behavior Identification in Support of Autonomic Networks 2010 ,		3
125	Subchannel and Power Allocation in OFDMA-Based Cognitive Radio Networks 2010,		5
124	A Spatial Game for Access Points Placement in Cognitive Radio Networks with Multi-Type Service 2010 ,		1
123	. IEEE/ACM Transactions on Networking, 2010 , 18, 1234-1247	3.8	96
122	Towards efficient P2P-based VoD provisioning in future internet 2010 ,		1
121	Opportunistic Bandwidth Sharing Through Reinforcement Learning. <i>IEEE Transactions on Vehicular Technology</i> , 2010 , 59, 3148-3153	6.8	34
120	. IEEE Transactions on Communications, 2010 , 58, 2097-2106	6.9	54
119	A New Hierarchical and Adaptive Protocol for Minimum-Delay V2V Communication 2009,		7
118	Opportunistic Exploitation of Bandwidth Resources through Reinforcement Learning 2009,		7
117	Stream-based cipher feedback mode in wireless error channel. <i>IEEE Transactions on Wireless Communications</i> , 2009 , 8, 622-626	9.6	47
116	Resource Pricing with Primary Service Guarantees in Cognitive Radio Networks: A Stackelberg Game Approach 2009 ,		13
115	An Efficient Signal-Range-Based Probabilistic Key Predistribution Scheme in a Wireless Sensor Network. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 2482-2497	6.8	9
114	Power-Fixed and Power-Aware MAC Protocols for Multihop Wireless Networks With a Large Interference Area. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 2966-2976	6.8	5
113	On Efficient Network Planning and Routing in Large-Scale MANETs. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 3796-3801	6.8	15
112	Efficient rekeying algorithms for WiMAX networks. Security and Communication Networks, 2009, 2, 392-	406	4
111	Transactions papers a routing-driven Elliptic Curve Cryptography based key management scheme for Heterogeneous Sensor Networks. <i>IEEE Transactions on Wireless Communications</i> , 2009 , 8, 1223-1229	9.6	275
110	On Supporting P2P-Based VoD Services over Mesh Overlay Networks 2009 ,		4
109	. IEEE Journal on Selected Areas in Communications, 2009 , 27, 480-494	14.2	55

108	Multipath routing for multiple description video communications over wireless mesh networks. <i>IEEE Wireless Communications</i> , 2009 , 16, 24-30	13.4	3
107	2009,		3
106	. IEEE Transactions on Multimedia, 2009 , 11, 1082-1093	6.6	38
105	On hierarchical pipeline paging in multi-tier overlaid hierarchical cellular networks. <i>IEEE Transactions on Wireless Communications</i> , 2009 , 8, 4406-4410	9.6	2
104	Secure and Efficient Time Synchronization in Heterogeneous Sensor Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2008 , 57, 2387-2394	6.8	62
103	. IEEE Transactions on Vehicular Technology, 2008 , 57, 2570-2577	6.8	110
102	On Next Generation CDMA Technologies: The REAL Approach for Perfect Orthogonal Code Generation. <i>IEEE Transactions on Vehicular Technology</i> , 2008 , 57, 2822-2833	6.8	34
101	. IEEE Transactions on Vehicular Technology, 2008 , 57, 3732-3745	6.8	6
100	Cognitive radio network management. IEEE Vehicular Technology Magazine, 2008, 3, 28-35	9.9	37
99	. IEEE Journal on Selected Areas in Communications, 2008 , 26, 156-167	14.2	32
99 98	. IEEE Journal on Selected Areas in Communications, 2008, 26, 156-167 A Cluster Based On-demand Multi-Channel MAC Protocol for Wireless Multimedia Sensor Networks 2008,	14.2	32 13
	A Cluster Based On-demand Multi-Channel MAC Protocol for Wireless Multimedia Sensor Networks		
98	A Cluster Based On-demand Multi-Channel MAC Protocol for Wireless Multimedia Sensor Networks 2008,		13
98 97	A Cluster Based On-demand Multi-Channel MAC Protocol for Wireless Multimedia Sensor Networks 2008, . IEEE Communications Surveys and Tutorials, 2008, 10, 78-93	37.1	13
98 97 96	A Cluster Based On-demand Multi-Channel MAC Protocol for Wireless Multimedia Sensor Networks 2008, . IEEE Communications Surveys and Tutorials, 2008, 10, 78-93 . IEEE Transactions on Wireless Communications, 2008, 7, 1298-1305 Double proportional fair user pairing algorithm for uplink virtual MIMO systems. IEEE Transactions	37.1 9.6	13 148 83
98 97 96 95	A Cluster Based On-demand Multi-Channel MAC Protocol for Wireless Multimedia Sensor Networks 2008, . IEEE Communications Surveys and Tutorials, 2008, 10, 78-93 . IEEE Transactions on Wireless Communications, 2008, 7, 1298-1305 Double proportional fair user pairing algorithm for uplink virtual MIMO systems. IEEE Transactions on Wireless Communications, 2008, 7, 2425-2429	9.6 9.6	13 148 83 55
98 97 96 95 94	A Cluster Based On-demand Multi-Channel MAC Protocol for Wireless Multimedia Sensor Networks 2008, . IEEE Communications Surveys and Tutorials, 2008, 10, 78-93 . IEEE Transactions on Wireless Communications, 2008, 7, 1298-1305 Double proportional fair user pairing algorithm for uplink virtual MIMO systems. IEEE Transactions on Wireless Communications, 2008, 7, 2425-2429 . IEEE Transactions on Wireless Communications, 2008, 7, 2950-2956	37.1 9.6 9.6	13 148 83 55 11

90	Defending DoS Attacks on Broadcast Authentication in Wireless Sensor Networks 2008,		36
89	Call Admission Control Optimization in WiMAX Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2008 , 57, 2509-2522	6.8	85
88	. IEEE Communications Surveys and Tutorials, 2008 , 10, 78-93	37.1	6
87	. IEEE Transactions on Wireless Communications, 2007 , 6, 3632-3640	9.6	5
86	Pulse Waveform Dependent BER Analysis of a DS-CDMA UWB Radio Under Multiple Access and Multipath Interferences. <i>IEEE Transactions on Wireless Communications</i> , 2007 , 6, 2338-2347	9.6	9
85	Two Tier Secure Routing Protocol for Heterogeneous Sensor Networks. <i>IEEE Transactions on Wireless Communications</i> , 2007 , 6, 3395-3401	9.6	66
84	Local Update-Based Routing Protocol in Wireless Sensor Networks with Mobile Sinks 2007,		33
83	Adaptive clustering in wireless sensor networks by mining sensor energy data. <i>Computer Communications</i> , 2007 , 30, 2968-2975	5.1	28
82	Double sense multiple access for wireless ad hoc networks. <i>Computer Networks</i> , 2007 , 51, 3978-3988	5.4	7
81	An effective key management scheme for heterogeneous sensor networks. <i>Ad Hoc Networks</i> , 2007 , 5, 24-34	4.8	358
80	Performance Analysis of Blanket Paging, Sequential Probability Paging, and Pipeline Probability Paging for Wireless Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2007 , 56, 2745-2755	6.8	8
79	A Secure Time Synchronization Scheme for Heterogeneous Sensor Networks 2007,		1
78	. IEEE Wireless Communications, 2007 , 14, 6-7	13.4	3
77	A Routing-Driven Key Management Scheme for Heterogeneous Sensor Networks 2007,		40
76	A Pseudo-Random Function Based Key Management Scheme for Heterogeneous Sensor Networks 2007 ,		2
75	Topics in Internet Technology [Guest Editoriaol] 2007, 45, 124-124		
74	Wireless Broadband Access: WiMAX and Beyond [Guest Editorial] 2007, 45, 60-61		2
73	IEEE 802.20: mobile broadband wireless access. <i>IEEE Wireless Communications</i> , 2007 , 14, 84-95	13.4	33

72	. IEEE Wireless Communications, 2007 , 14, 61-69	13.4	16
71	. IEEE Network, 2007 , 21, 4-5	11.4	7
70	. IEEE Transactions on Vehicular Technology, 2006 , 55, 1302-1310	6.8	20
69	Energy Map: Mining Wireless Sensor Network Data 2006 ,		2
68	A Fuzzy-Based Hierarchical Energy Efficient Routing Protocol for Large Scale Mobile Ad Hoc Networks (FEER) 2006 ,		10
67	NIS01-4: Trust Aware Routing in Mobile Ad Hoc Networks. <i>IEEE Global Telecommunications Conference (GLOBECOM)</i> , 2006 ,		13
66	. IEEE Transactions on Mobile Computing, 2006 , 5, 64-76	4.6	19
65	. IEEE Transactions on Wireless Communications, 2006 , 5, 2202-2209	9.6	6
64	Cross-layer-based modeling for quality of service guarantees in mobile wireless networks 2006 , 44, 100	-106	79
63	Topics in internet technology [Guest editorial] 2006 , 44, 112-112		
62	Topics in internet technology 2006 , 44, 94-94		
61	. IEEE Journal on Selected Areas in Communications, 2006 , 24, 46-53	14.2	4
60	Guest Editorial Ultra-Wideband Wireless Communications Theory and Applications. <i>IEEE Journal on Selected Areas in Communications</i> , 2006 , 24, 713-716	14.2	11
59	Punctured hopping CDMA techniques: fundamentals and application to UWB communications. <i>IEEE Journal on Selected Areas in Communications</i> , 2006 , 24, 731-737	14.2	
58	An Enhanced IEEE 802.11 MAC Algorithm for Tradeoff between Delay and Energy-Consumption 2006 ,		4
57	. IEEE Wireless Communications, 2006 , 13, 68-79	13.4	41
56	Distributed Decision Making Algorithm for Self-Healing Sensor Networks 2006,		9
55	Localization 2006 , 279-304		3

54	UWB Pulse Propagation and Detection 2006 , 37-52	0
53	Trends in Ultra-wideband Transceiver Design 2006 , 127-153	1
52	Radio Resource Management for Ultra-wideband Communications 2006, 189-209	1
51	Mixed-Signal Ultra-wideband Communications Receivers 2006 , 103-126	
50	Digital-Carrier Spreading Codes for Baseband UWB Multiaccess 2006 , 251-277	
49	Pulsed UWB Interference to Narrowband Receivers 2006 , 211-250	
48	Error Performance of Pulsed Ultra-wideband Systems in Indoor Environments 2006 , 83-101	
47	UWB MAC and Ad Hoc Networks 2006 , 155-188	1
46	Modulation and Signal Detection in UWB 2006 , 15-35	1
45	Genetic Approach for Traffic Grooming, Routing, and Wavelength Assignment in WDM Optical Networks with Sparse Grooming Resources 2006 ,	8
44	Timing Synchronization for UWB Impulse Radios 2006 , 53-81	2
43	Paging load balance in hierarchical cellular networks 2005 ,	1
42	Optimal stream-based cipher feedback mode in error channel 2005 ,	2
41	Multiple access technologies for B3G wireless communications 2005 , 43, 65-67	11
40	Guest Editorial Intelligent Services and Applications in Next-Generation Networks. <i>IEEE Journal on Selected Areas in Communications</i> , 2005 , 23, 197-200	
39	Performance Evaluation of TCP over Optical Channels and Heterogeneous Networks. <i>Cluster Computing</i> , 2004 , 7, 225-238	1
38	Guest Editorial on Advances in Optical Network Switching and Routing. Cluster Computing, 2004, 7, 217-218	
37	Routing framework for all-optical DWDM metro and long-haul transport networks with sparse wavelength conversion capabilities. <i>IEEE Journal on Selected Areas in Communications</i> , 2004 , 22, 1443-1459.2	10

Guest editorial - Topics in internet technology **2004**, 42, 150-150

35	Design and Simulation of a New Queuing Architecture for Large-Scale ATM Switches. <i>Simulation</i> , 2002 , 78, 431-446	1.2	
34	2002 , 40, 50-56		5
33	Link Sizing for Multi-Media Traffic Transported over IP. Cluster Computing, 2001, 4, 335-342	2.1	3
32	A new queuing strategy for large scale ATM switches 2001 , 39, 142-146		3
31	Internet telephony [Guest Editorial] 2000, 38, 44-46		3
30	. IEEE Transactions on Education, 1998, 41, 257-262	2.1	
29	An effective congestion control scheme for ATM networks. <i>International Journal of Network Management</i> , 1998 , 8, 75-86	1.8	
28	High-speed protocol for an all-optical packet switched metropolitan area network. <i>International Journal of Network Management</i> , 1997 , 7, 9-17	1.8	4
27	ATM Architectures Using Optical Technology: An Overview of Switching, Buffering and Multiplexing. <i>International Journal of Network Management</i> , 1997 , 7, 198-220	1.8	O
26	Design and implementation of a software bridge with packet filtering and statistics collection functions. <i>International Journal of Network Management</i> , 1997 , 7, 251-263	1.8	О
25	SEROS IA SELF-ROUTING OPTICAL ATM SWITCH. <i>International Journal of Communication Systems</i> , 1996 , 9, 115-125	1.7	2
24	Capacity of slotted ALOHA in generalised fading environments. <i>Electronics Letters</i> , 1996 , 32, 2046	1.1	4
23	PC-compatible optical data acquisition unit. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 1995 , 16, 653-663		
22	Optical architectures modeling: A new methodology. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 1995 , 16, 1123-1128		
21	Modeling of optical devices for the design of multistage interconnection network systems. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 1994 , 15, 1445-1461		
20	Design of a data acquisition unit using photonic devices. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 1994 , 15, 605-617		1
19	Picosecond multistage interconnection network architecture for optical computing. <i>Applied Optics</i> , 1994 , 33, 1587-99	1.7	5

18	Optical realization of a Clos nonblocking broadcast switching network with constant time network control algorithm. <i>Applied Optics</i> , 1993 , 32, 665-73	1.7	5
17	. IEEE Journal on Selected Areas in Communications, 1990 , 8, 1595-1607	14.2	15
16	. IEEE Transactions on Knowledge and Data Engineering, 1989, 1, 111-132	4.2	21
15	. Proceedings of the IEEE, 1989 , 77, 1797-1815	14.3	35
14	Routing in all-optical DWDM networks with sparse wavelength conversion capabilities		3
13	Beyond 3G: uplink capacity estimation for wireless spread-spectrum orthogonal frequency division multiplexing (SS-OFDM)		2
12	Markov modulated Poisson process model for hand-off calls in cellular systems		7
11	A fault tolerant ATM switching architecture		4
10	Optical design of a fault tolerant self-routing switch for massively parallel processing networks		2
9	Throughput analysis of a fault-tolerant optical switch		2
8			3
7			1
6	Scratch-Rec: a novel Scratch recommendation approach adapting user preference and programming skill for enhancing learning to program. <i>Applied Intelligence</i> ,1	4.9	О
5	Advances in optical switching and networking: past, present, and future		10
4	AI-enabled remote monitoring of vital signs for COVID-19: methods, prospects and challenges. <i>Computing (Vienna/New York)</i> ,1	2.2	15
3	A deep learning-based approach for fault diagnosis of current-carrying ring in catenary system. Neural Computing and Applications,1	4.8	1
2	Neuro-fuzzy analytics in athlete development (NueroFATH): a machine learning approach. <i>Neural Computing and Applications</i> ,1	4.8	2
	Video transcoding at the edge: cost and feasibility perspective. <i>Cluster Computing</i> ,1		