## Vassiliy Lubchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/668913/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Theory of Structural Glasses and Supercooled Liquids. Annual Review of Physical Chemistry, 2007, 58, 235-266.                                                                                                                                                     | 4.8  | 683       |
| 2  | Theory of aging in structural glasses. Journal of Chemical Physics, 2004, 121, 2852-2865.                                                                                                                                                                         | 1.2  | 157       |
| 3  | The origin of the boson peak and thermal conductivity plateau in low-temperature glasses.<br>Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1515-1518.                                                               | 3.3  | 141       |
| 4  | Barrier softening near the onset of nonactivated transport in supercooled liquids: Implications for<br>establishing detailed connection between thermodynamic and kinetic anomalies in supercooled<br>liquids. Journal of Chemical Physics, 2003, 119, 9088-9105. | 1.2  | 120       |
| 5  | Origin of Anomalous Mesoscopic Phases in Protein Solutions. Journal of Physical Chemistry B, 2010, 114, 7620-7630.                                                                                                                                                | 1.2  | 95        |
| 6  | Intrinsic Quantum Excitations of Low Temperature Glasses. Physical Review Letters, 2001, 87, 195901.                                                                                                                                                              | 2.9  | 93        |
| 7  | Mosaic Energy Landscapes of Liquids and the Control of Protein Conformational Dynamics by<br>Glass-Forming Solvents. Journal of Physical Chemistry B, 2005, 109, 7488-7499.                                                                                       | 1.2  | 73        |
| 8  | Ostwald-Like Ripening of the Anomalous Mesoscopic Clusters in Protein Solutions. Journal of<br>Physical Chemistry B, 2012, 116, 10657-10664.                                                                                                                      | 1.2  | 61        |
| 9  | Theory of the structural glass transition: a pedagogical review. Advances in Physics, 2015, 64, 283-443.                                                                                                                                                          | 35.9 | 50        |
| 10 | Lack of Dependence of the Sizes of the Mesoscopic Protein Clusters on Electrostatics. Biophysical<br>Journal, 2015, 109, 1959-1968.                                                                                                                               | 0.2  | 40        |
| 11 | Shear thinning in deeply supercooled melts. Proceedings of the National Academy of Sciences of the<br>United States of America, 2009, 106, 11506-11510.                                                                                                           | 3.3  | 30        |
| 12 | Anisotropy of the Coulomb Interaction between Folded Proteins: Consequences for Mesoscopic<br>Aggregation of Lysozyme. Biophysical Journal, 2012, 102, 1934-1943.                                                                                                 | 0.2  | 28        |
| 13 | A Universal Criterion of Meltingâ€. Journal of Physical Chemistry B, 2006, 110, 18779-18786.                                                                                                                                                                      | 1.2  | 26        |
| 14 | Stress Distribution and the Fragility of Supercooled Melts. Journal of Physical Chemistry B, 2009, 113, 16337-16345.                                                                                                                                              | 1.2  | 25        |
| 15 | Microscopically Based Calculations of the Free Energy Barrier and Dynamic Length Scale in<br>Supercooled Liquids: The Comparative Role of Configurational Entropy and Elasticity. Journal of<br>Physical Chemistry B, 2013, 117, 15204-15219.                     | 1.2  | 22        |
| 16 | Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. II.<br>The intrinsic electronic midgap states. Journal of Chemical Physics, 2010, 133, 234504.                                                                   | 1.2  | 21        |
| 17 | Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. I. The formation of thepp $I_f$ -network. Journal of Chemical Physics, 2010, 133, 234503.                                                                        | 1.2  | 21        |
| 18 | An intrinsic formation mechanism for midgap electronic states in semiconductor glasses. Journal of<br>Chemical Physics, 2010, 132, 044508.                                                                                                                        | 1.2  | 19        |

VASSILIY LUBCHENKO

| #  | Article                                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | â€~â€~False tunneling'' and multirelaxation time nonexponential kinetics of electron transfer in polar<br>glasses. Journal of Chemical Physics, 1996, 104, 1875-1885.                                                                                                                                                                 | 1.2 | 18        |
| 20 | Aging, Jamming, and the Limits of Stability of Amorphous Solids. Journal of Physical Chemistry B, 2018, 122, 3280-3295.                                                                                                                                                                                                               | 1.2 | 18        |
| 21 | A mechanism for reversible mesoscopic aggregation in liquid solutions. Nature Communications, 2019, 10, 2381.                                                                                                                                                                                                                         | 5.8 | 17        |
| 22 | Charge and momentum transfer in supercooled melts: Why should their relaxation times differ?.<br>Journal of Chemical Physics, 2007, 126, 174503.                                                                                                                                                                                      | 1.2 | 15        |
| 23 | Control of the nucleation of sickle cell hemoglobin polymers by free hematin. Faraday Discussions, 2012, 159, 87.                                                                                                                                                                                                                     | 1.6 | 15        |
| 24 | Liquid State Elasticity and the Onset of Activated Transport in Glass Formers. Journal of Physical Chemistry B, 2012, 116, 5729-5737.                                                                                                                                                                                                 | 1.2 | 15        |
| 25 | Universality of the onset of activated transport in Lennard-Jones liquids with tunable coordination:<br>Implications for the effects of pressure and directional bonding on the crossover to activated<br>transport, configurational entropy, and fragility of glassforming liquids. Journal of Chemical<br>Physics 2012, 136, 084504 | 1.2 | 15        |
| 26 | On the Mechanism of Activated Transport in Glassy Liquids. Journal of Physical Chemistry B, 2014, 118, 13744-13759.                                                                                                                                                                                                                   | 1.2 | 14        |
| 27 | Light Absorption in Strongly Irradiated Long Range Polar Electron Transfer Systems. Physical Review<br>Letters, 1996, 77, 2917-2920.                                                                                                                                                                                                  | 2.9 | 13        |
| 28 | Electrodynamics of amorphous media at low temperatures. Molecular Physics, 2006, 104, 1325-1335.                                                                                                                                                                                                                                      | 0.8 | 12        |
| 29 | Microscopic calculation of the free energy cost for activated transport in glass-forming liquids.<br>Journal of Chemical Physics, 2013, 138, 12A534.                                                                                                                                                                                  | 1.2 | 12        |
| 30 | Competing interactions create functionality through frustration. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10635-10636.                                                                                                                                                             | 3.3 | 10        |
| 31 | Self-consistent elastic continuum theory of degenerate, equilibrium aperiodic solids. Journal of<br>Chemical Physics, 2014, 141, 174502.                                                                                                                                                                                              | 1.2 | 10        |
| 32 | The chemical bond as an emergent phenomenon. Journal of Chemical Physics, 2017, 146, 174502.                                                                                                                                                                                                                                          | 1.2 | 9         |
| 33 | Amorphous chalcogenides as random octahedrally bonded solids: I. Implications for the first sharp<br>diffraction peak, photodarkening, and Boson peak. Journal of Chemical Physics, 2017, 147, 114505.                                                                                                                                | 1.2 | 9         |
| 34 | Low-temperature anomalies in disordered solids: a cold case of contested relics?. Advances in Physics:<br>X, 2018, 3, 1510296.                                                                                                                                                                                                        | 1.5 | 9         |
| 35 | The effect of charged impurities on a glass transition in a polar medium. Journal of Chemical Physics, 1996, 104, 664-668.                                                                                                                                                                                                            | 1.2 | 8         |
| 36 | Quantum Phenomena in Structural Glasses: The Intrinsic Origin of Electronic and Cryogenic<br>Anomalies. Journal of Physical Chemistry Letters, 2012, 3, 1-7.                                                                                                                                                                          | 2.1 | 8         |

| #  | Article                                                                                                                                                                                                                    | IF            | CITATIONS          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|
| 37 | Pressure in the Landau-Ginzburg functional: Pascal's law, nucleation in fluid mixtures, a meanfield theory of amphiphilic action, and interface wetting in glassy liquids. Journal of Chemical Physics, 2015, 143, 124502. | 1.2           | 8                  |
| 38 | Glass Dynamics Deep in the Energy Landscape. Journal of Physical Chemistry B, 2021, 125, 9052-9068.                                                                                                                        | 1.2           | 8                  |
| 39 | Random First-Order Phase Transition Theory of the Structural Glass Transition. , 2012, , 223-236.                                                                                                                          |               | 7                  |
| 40 | Spectral diffusion and drift: Single chromophore and en masse. Journal of Chemical Physics, 2007, 126, 064701.                                                                                                             | 1.2           | 6                  |
| 41 | Structural Origin of the Midgap Electronic States and the Urbach Tail in Pnictogen-Chalcogenide<br>Glasses. Journal of Physical Chemistry B, 2018, 122, 8082-8097.                                                         | 1.2           | 6                  |
| 42 | Quantitative theory of structural relaxation in supercooled liquids and folded proteins. Journal of Non-Crystalline Solids, 2006, 352, 4400-4409.                                                                          | 1.5           | 5                  |
| 43 | Glass transition imminent, resistance is futile. Proceedings of the National Academy of Sciences of the<br>United States of America, 2017, 114, 3289-3291.                                                                 | 3.3           | 5                  |
| 44 | Photon Activation of Glassy Dynamics: A Mechanism for Photoinduced Fluidization, Aging, and<br>Information Storage in Amorphous Materials. Journal of Physical Chemistry B, 2020, 124, 8434-8453.                          | 1.2           | 5                  |
| 45 | Interrupted escape and the emergence of exponential relaxation. Journal of Chemical Physics, 2004, 121, 5958-5976.                                                                                                         | 1.2           | 4                  |
| 46 | Multiphoton absorption by metal–metal long distance chargeâ€ŧransfer complexes in polar solvents.<br>Journal of Chemical Physics, 1996, 105, 9441-9453.                                                                    | 1.2           | 3                  |
| 47 | Long-range electron transfer driven by two lasers: Induced irradiance. Journal of Chemical Physics, 1998, 109, 691-703.                                                                                                    | 1.2           | 3                  |
| 48 | Temperature-driven narrowing of the insulating gap as a precursor of the insulator-to-metal<br>transition: Implications for the electronic structure of solids. Journal of Chemical Physics, 2019, 150,<br>244502.         | 1.2           | 3                  |
| 49 | Control of Chemical Equilibrium by Noiseâ€. Journal of Physical Chemistry B, 2004, 108, 19852-19858.                                                                                                                       | 1.2           | 2                  |
| 50 | Molecular Binoculars: How to Spatially Resolve Environmental Fluctuations by Following Two or<br>More Single-Molecule Spectral Trails at a Time. Journal of Physical Chemistry B, 2013, 117, 12734-12741.                  | 1.2           | 1                  |
| 51 | Response to â€~â€~Comment on â€~The effect of charged impurities on a glass transition in a polar medium'â<br>Chem. Phys. 105, 8979 (1996)]. Journal of Chemical Physics, 1996, 105, 8981-8982.                            | €‰â€™â<br>1.2 | € <sub>0</sub> [J. |
| 52 | Correction to "Quantum Phenomena in Structural Glasses: The Intrinsic Origin of Electronic and<br>Cryogenic Anomalies― Journal of Physical Chemistry Letters, 2012, 3, 1745-1745.                                          | 2.1           | 0                  |
| 53 | Tribute to Peter G. Wolynes. Journal of Physical Chemistry B, 2013, 117, 12669-12671.                                                                                                                                      | 1.2           | 0                  |