## Horr Khosravi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6689014/publications.pdf Version: 2024-02-01



HODD KHOSDAVI

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Modified fish-bone model: A simplified MDOF model for simulation of seismic responses of moment resisting frames. Soil Dynamics and Earthquake Engineering, 2013, 55, 195-210.                      | 3.8 | 42        |
| 2  | Nonlinear Interstory Drift Contours for Idealized Forward Directivity Pulses Using "Modified<br>Fish-Bone―Models. Advances in Structural Engineering, 2015, 18, 603-627.                            | 2.4 | 42        |
| 3  | Substitute Frame and adapted Fish-Bone model: Two simplified frames representative of RC moment resisting frames. Engineering Structures, 2019, 185, 68-89.                                         | 5.3 | 27        |
| 4  | Seismic response of RC buildings subjected to flingâ€step in the nearâ€fault region. Structural Concrete,<br>2020, 21, 1919-1937.                                                                   | 3.1 | 18        |
| 5  | Multi-Mode Response of Shear and Flexural Buildings to Pulse-Type Ground Motions in Near-Field<br>Earthquakes. Journal of Earthquake Engineering, 2008, 12, 616-630.                                | 2.5 | 17        |
| 6  | An investigation of P-delta effect in conventional seismic design and direct displacement-based design<br>using elasto-plastic SDOF systems. Bulletin of Earthquake Engineering, 2019, 17, 313-336. | 4.1 | 15        |
| 7  | Development of Performance Based Plastic Design of EBF Steel Structures Subjected to Forward<br>Directivity Effect. International Journal of Steel Structures, 2021, 21, 1092-1107.                 | 1.3 | 14        |
| 8  | Nonlinear macro modeling of slender reinforced concrete shear walls. Structural Concrete, 2019, 20, 899-910.                                                                                        | 3.1 | 12        |
| 9  | Fling-step ground motions simulation using theoretical-based Green's function technique for structural analysis. Soil Dynamics and Earthquake Engineering, 2018, 115, 232-245.                      | 3.8 | 10        |
| 10 | Spectral acceleration matching procedure with respect to normalization approach. Bulletin of Earthquake Engineering, 2020, 18, 5165-5191.                                                           | 4.1 | 8         |
| 11 | Improvement of energy damage index bounds for circular reinforced concrete bridge piers under<br>dynamic analysis. Structural Concrete, 2021, 22, 3315-3335.                                        | 3.1 | 8         |
| 12 | On advantages of the "Substitute Frame―model for incremental dynamic analysis: Integration of speed and accuracy. Structures, 2022, 39, 266-277.                                                    | 3.6 | 8         |
| 13 | General Substitute Frame Model (GSF) for efficient estimation of seismic demands of steel and RC moment frames. Engineering Structures, 2021, 246, 113031.                                          | 5.3 | 7         |
| 14 | Consideration of strength-stiffness dependency in the determination of lateral load pattern. Soil<br>Dynamics and Earthquake Engineering, 2020, 137, 106287.                                        | 3.8 | 6         |
| 15 | On Seismic Response Reduction of Adjacent Frame: Emphasis on the Different Characteristics of<br>Earthquakes. International Journal of Civil Engineering, 2022, 20, 91-106.                         | 2.0 | 5         |
| 16 | Improved Substitute-Frame (ISF) model for seismic response of steel-MRF with vertical irregularities.<br>Journal of Constructional Steel Research, 2021, 186, 106918.                               | 3.9 | 4         |
| 17 | Seismic force demand on <scp>RC</scp> shear walls for direct displacementâ€based design. Structural<br>Concrete, 2022, 23, 1508-1532.                                                               | 3.1 | 4         |
| 18 | Nonlinear Vibration Control of Adjacent Steel MRF Structures Using Non-velocity Dependent Dampers<br>Subjected to Various Seismic Excitations. International Journal of Steel Structures, 0, , 1.   | 1.3 | 1         |

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Inelastic Seismic Demand of Steel-Plate Shear Wall Structures: Emphasis on the PTD Effect.<br>International Journal of Civil Engineering, 0, , 1. | 2.0 | 1         |
| 20 | Characterization of site location versus the causative fault in seismic demands of structures.<br>Structures, 2022, 40, 693-710.                  | 3.6 | 1         |