
Ichiro Minami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6688918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ionic Liquids in Tribology. Molecules, 2009, 14, 2286-2305.	3.8	594
2	New synthetic reactions of allyl alkyl carbonates, allyl .betaketo carboxylates, and allyl vinylic carbonates catalyzed by palladium complexes. Accounts of Chemical Research, 1987, 20, 140-145.	15.6	371
3	Allylic carbonates. Efficient allylating agents of carbonucleophiles in palladium-catalyzed reactions under neutral conditions. Journal of Organic Chemistry, 1985, 50, 1523-1529.	3.2	234
4	Effect and mechanism of additives for ionic liquids as new lubricants. Tribology International, 2007, 40, 620-625.	5.9	200
5	Novel palladium-catalyzed reactions of propargyl carbonates with carbonucleophiles under neutral conditions. Journal of the American Chemical Society, 1985, 107, 2196-2198.	13.7	166
6	Palladium-catalyzed allylation of ketones and aldehydes via allyl enol carbonates. Tetrahedron Letters, 1983, 24, 1793-1796.	1.4	137
7	Facile Palladium catalyzed decarboxylative allylation of active methylene compounds under neutral conditions using allylic carbonates. Tetrahedron Letters, 1982, 23, 4809-4812.	1.4	131
8	The Tribological Properties of Ionic Liquids Composed of Trifluorotris(pentafluoroethyl) Phosphate as a Hydrophobic Anion. Tribology Letters, 2008, 30, 215-223.	2.6	126
9	A new furan annelation reaction by the palladium-catalyzed reaction of 2-alkynyl carbonates or 2-(1-alkynyl)oxiranes with β-keto esters. Journal of Organometallic Chemistry, 1987, 334, 225-242.	1.8	123
10	Tribo-Chemistry of Phosphonium-Derived Ionic Liquids. Tribology Letters, 2010, 40, 225-235.	2.6	120
11	Reactions of allylic carbonates catalyzed by palladium, rhodium, ruthenium, molybdenum, and nickel complexes; allylation of carbonucleophiles and decarboxylation- dehydrogenation. Journal of Organometallic Chemistry, 1985, 296, 269-280.	1.8	119
12	New synthetic methods for α,β -unsaturated ketones, aldehydes, esters and lactones by the palladium-catalyzed reactions of silyl enol ethers, ketene silyl acetals, and enol acetates with allyl carbonates. Tetrahedron, 1986, 42, 2971-2977.	1.9	113
13	PALLADIUM-CATALYZED ALLYLATION OF KETONES AND ALDEHYDES WITH ALLYLIC CARBONATES VIA SILYL ENOL ETHERS UNDER NEUTRAL CONDITIONS. Chemistry Letters, 1983, 12, 1325-1326.	1.3	104
14	Molecular Science of Lubricant Additives. Applied Sciences (Switzerland), 2017, 7, 445.	2.5	98
15	REGIOSELECTIVE SYNTHESIS OF 1-OLEFINS BY PALLADIUM-CATALYZED HYDROGENOLYSIS OF TERMINAL ALLYLIC COMPOUNDS WITH AMMONIUM FORMATE. Chemistry Letters, 1984, 13, 1017-1020.	1.3	93
16	Palladium-catalyzed carbonylation of propargylic carbonates: Preparation of 2,3- and 2,4-dienyl carboxylates. Tetrahedron Letters, 1986, 27, 731-734.	1.4	93
17	Allyation of carbonucleophiles with allylic carbonates under neutral conditions catalyzed by rhodium complexes. Tetrahedron Letters, 1984, 25, 5157-5160.	1.4	84
18	Boundary and elastohydrodynamic lubrication studies of glycerol aqueous solutions as green lubricants. Tribology International, 2014, 69, 39-45.	5.9	83

Ichiro Minami

#	Article	IF	CITATIONS
19	Palladium-catalyzed reaction of allyl carbamates; allylation of carbonucleophiles, and protection-deprotection of amines. Tetrahedron Letters, 1985, 26, 2449-2452.	1.4	79
20	Halogen-free borate ionic liquids as novel lubricants for tribological applications. Tribology International, 2013, 67, 191-198.	5.9	69
21	Thermo-oxidative stability of ionic liquids as lubricating fluids. Journal of Synthetic Lubrication: Research, Development and Application of Synthetic Lubricants and Functional Fluids, 2007, 24, 135-147.	0.7	63
22	A novel palladium-catalyzed preparative method of α,β-unsaturated ketones and aldehydes from saturated ketones and aldehydes via their silyl enol ethers. Tetrahedron Letters, 1983, 24, 5635-5638.	1.4	61
23	Palladium-catalyzed synthesis of α,β-unsaturated ketones from ketones via allyl enol carbonates. Tetrahedron Letters, 1983, 24, 1797-1800.	1.4	59
24	Allylation of ketones via their enol acetates catalyzed by palladium-phosphine complexes and organotin compounds. Tetrahedron Letters, 1983, 24, 4713-4714.	1.4	56
25	Palladium-catalysed preparation of 1,2-dienes by selective hydrogenolysis of alk-2-ynyl carbonates with ammonium formate. Journal of the Chemical Society Chemical Communications, 1986, , 922.	2.0	51
26	Investigation of decomposition of hydrocarbon oil on the nascent surface of steel. Tribology Letters, 2007, 27, 25-30.	2.6	49
27	Lubrication Mechanism of Phosphonium Phosphate Ionic Liquid Additive in Alkylborane–Imidazole Complexes. Tribology Letters, 2014, 53, 421-432.	2.6	48
28	Palladium-catalyzed preparation of α-allyl esters and α,β-unsaturated esters from saturated esters via their silyl acetals. Tetrahedron Letters, 1984, 25, 4783-4786.	1.4	47
29	Dehydrogenation of alcohols with allyl carbonates catalyzed by palladium or ruthenium complexes. Tetrahedron, 1987, 43, 3903-3915.	1.9	46
30	ENONE FORMATION FROM ALLYL β-KETO ESTERS, ALKENYL ALLYL CARBONATES, SILYL ENOL ETHERS, AND ENOL ACETATES BY THE PHOSPHINE-FREE PALLADIUM CATALYST. Chemistry Letters, 1984, 13, 1133-1136.	- 1.3	41
31	One-step synthesis of α,β-unsaturated ketones by the reaction of enol acetates with allyl methyl carbonate catalyzed by palladium and tin compounds. Tetrahedron Letters, 1983, 24, 5639-5640.	1.4	40
32	Design of Alkyl Sulfate Ionic Liquids for Lubricants. Chemistry Letters, 2009, 38, 64-65.	1.3	39
33	Preparation of α-methylene ketones by the palladium-catalyzed decarboxylation-deacetoxylation of allyl α-acetoxymethyl-β-keto carboxylates under mild conditions. Tetrahedron Letters, 1986, 27, 2483-2486.	1.4	38
34	Preparation of unstable 3-alkylidene furans by the palladium-catalyzed reaction of α-alkynyl epoxides with β-keto esters. Tetrahedron Letters, 1987, 28, 629-632.	1.4	37
35	Concept of molecular design towards additive technology for advanced lubricants. Lubrication Science, 2007, 19, 127-149.	2.1	35
36	Reducing Friction and Wear of Tribological Systems through Hybrid Tribofilm Consisting of Coating and Lubricants. Lubricants, 2014, 2, 90-112.	2.9	35

ICHIRO MINAMI

#	Article	IF	CITATIONS
37	Effects of Carboxylic Acids on Friction and Wear Reducing Properties for Alkylmethylimidazolium Derived Ionic liquids. Tribology Online, 2006, 1, 40-43.	0.9	34
38	Tribochemical investigation of DLC coating in water using stable isotopic tracers. Applied Surface Science, 2008, 254, 3397-3402.	6.1	34
39	Tribological properties of halogen-free ionic liquids. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2012, 226, 891-902.	1.8	32
40	SYNTHESIS OF γ,Î′-UNSATURATED KETONES BY THE INTRAMOLECULAR DECARBOXYLATIVE ALLYLATION OF ALLYI β-KETO CARBOXYLATES AND ALKENYL ALLYL CARBONATES CATALYZED BY MOLYBDENUM, NICKEL,AND RHODIUM COMPLEXES. Chemistry Letters, 1984, 13, 1721-1724.	L 1.3	31
41	Investigation of Tribo-Chemistry by Means of Stable Isotopic Tracers, Part 2: Lubrication Mechanism of Friction Modifiers on Diamond-Like Carbon. Tribology Transactions, 2007, 50, 477-487.	2.0	31
42	Aspartic Acid-derived Wear-preventing and Friction-reducing Agents for Ionic Liquids. Chemistry Letters, 2008, 37, 300-301.	1.3	30
43	Semi-deterministic chemo-mechanical model of boundary lubrication. Faraday Discussions, 2012, 156, 343.	3.2	30
44	Tribological Behaviors of 52100 Steel in Carbon Dioxide Atmosphere. Tribology Letters, 2004, 17, 925-930.	2.6	29
45	Study of the effect of tribo-materials and surface finish on the lubricant performance of new halogen-free room temperature ionic liquids. Applied Surface Science, 2016, 366, 464-474.	6.1	29
46	Investigation of anti-wear additives for low viscous synthetic esters: Hydroxyalkyl phosphonates. Tribology International, 2007, 40, 626-631.	5.9	27
47	Molecular Design of Environmentally Adapted Lubricants: Antiwear Additives Derived from Natural Amino Acids. Tribology Transactions, 2010, 53, 713-721.	2.0	26
48	Palladium-catalyzed oxidation of alcohols via their allyl carbonates under neutral conditions. Tetrahedron Letters, 1984, 25, 2791-2792.	1.4	25
49	TOF-SIMS analysis of boundary films derived from calcium sulfonates. Tribology Letters, 2006, 23, 171-176.	2.6	25
50	Preparation of thermodynamically stable enol silyl ethers of γ,δ-unsaturated ketones by palladium-catalyzed decarboxylation-allylation of allyl 2,3-disubstituted 3-trimethylsiloxyacrylates. Tetrahedron Letters, 1987, 28, 2397-2398.	1.4	24
51	Tribochemical reaction of Si-DLC coating in water studied by stable isotopic tracer. Diamond and Related Materials, 2008, 17, 147-153.	3.9	24
52	1-Isopropylallyloxycarbonyl (IPAoc) as a protective group of amines and its deprotection catalysed by palladium-phosphine complex. Tetrahedron Letters, 1987, 28, 2737-2740.	1.4	23
53	Insight into degradation of ammonium-based ionic liquids and comparison of tribological performance between selected intact and altered ionic liquid. Tribology International, 2013, 65, 13-27.	5.9	23
54	Synthesis of dehydroxy-trans-resorcylide by intramolecular alkylation of the protected cyanohydrin using a butadiene telomer as a building block. Tetrahedron Letters, 1981, 22, 2651-2654.	1.4	22

ICHIRO MINAMI

#	Article	IF	CITATIONS
55	A new preparative method for α,β-unsaturated nitriles by the palladium-catalysed decarboxylation–dehydrogenation of allyl α-cyanocarboxylates. Journal of the Chemical Society Chemical Communications, 1986, , 118-119.	2.0	22
56	Oxidation of alcohols with allyl methyl carbonate by means of ruthenium catalyst. Tetrahedron Letters, 1986, 27, 1805-1808.	1.4	22
57	Tribological investigations of ionic liquids in ultraâ€high vacuum environment. Lubrication Science, 2014, 26, 514-524.	2.1	22
58	Molecular design of advanced lubricant base fluids: hydrocarbon-mimicking ionic liquids. RSC Advances, 2017, 7, 6364-6373.	3.6	22
59	Improvement in the tribological properties of imidazoliumâ€derived ionic liquids by additive technology. Journal of Synthetic Lubrication: Research, Development and Application of Synthetic Lubricants and Functional Fluids, 2008, 25, 45-55.	0.7	21
60	Antiwear Properties of Phosphorous-Containing Compounds in Vegetable Oils. Tribology Letters, 2002, 13, 95-101.	2.6	20
61	Boundary film formation from overbased calcium sulfonate additives during running-in process of steel–DLC contact. Wear, 2008, 265, 461-467.	3.1	20
62	Anti-wear and friction reducing additives composed of ortho-phenylene phosphate-amine salts for polyether type base stocks. Tribology International, 1998, 31, 305-312.	5.9	19
63	Lubrication performance of model organic compounds in high oleic sunflower oil. Journal of Synthetic Lubrication: Research, Development and Application of Synthetic Lubricants and Functional Fluids, 1999, 16, 1-12.	0.7	19
64	Investigation of Tribo-chemistry by means of Stable Isotopic Tracers: TOF-SIMS Analysis of Langmuir–Blodgett Films and Examination of their Tribological Properties. Tribology Letters, 2005, 20, 287-297.	2.6	17
65	Tribochemical investigation of DLC coating tested against steel in water using a stable isotopic tracer. Diamond and Related Materials, 2007, 16, 1760-1764.	3.9	17
66	Synergistic effect of antiwear additives and antioxidants in vegetable oil. Journal of Synthetic Lubrication: Research, Development and Application of Synthetic Lubricants and Functional Fluids, 2004, 21, 193-205.	0.7	14
67	Antiwear Additives for Ester Oils. Journal of Synthetic Lubrication: Research, Development and Application of Synthetic Lubricants and Functional Fluids, 2005, 22, 105-121.	0.7	14
68	Monitoring of Running-in of an EHL Contact Using Contact Impedance. Tribology Letters, 2016, 63, 1.	2.6	14
69	Performance and mechanisms of silicate tribofilm in heavily loaded rolling/sliding non-conformal contacts. Tribology International, 2018, 123, 130-141.	5.9	13
70	Tribochemistry and thermo-oxidative stability of halogen-free ionic liquids. RSC Advances, 2017, 7, 48766-48776.	3.6	12
71	Additives for Environmentally Adapted Lubricants - Friction and Wear Protection. Tribology Online, 2008, 3, 163-167.	0.9	12
72	Tribological Performance and Transfer Behavior of Lubricating Oils at Head-Disk Interface under Volatile Organic Contamination. Tribology Letters, 2005, 19, 299-309.	2.6	11

ICHIRO MINAMI

#	Article	IF	CITATIONS
73	Diallyl disulphide as natural organosulphur friction modifier via the in-situ tribo-chemical formation of tungsten disulphide. Applied Surface Science, 2018, 428, 659-668.	6.1	11
74	Development of novel lubricity additives: hydroxyalkyl ester of ortho-phenylene phosphate. Tribology Letters, 1995, 1, 139.	2.6	10
75	Investigation of tribo-chemistry by means of stable isotopic tracers: Mechanism for durability of monomolecular boundary film. Tribology International, 2008, 41, 1056-1062.	5.9	10
76	Influence of water on the tribological properties of zinc dialkyl-dithiophosphate and over-based calcium sulphonate additives in wet clutch contacts. Tribology International, 2015, 87, 113-120.	5.9	10
77	Ionic Liquids as Performance Ingredients in Space Lubricants. Molecules, 2021, 26, 1013.	3.8	10
78	Effects of fineâ€dispersed PTFE on load carrying capacity of PEEK. Lubrication Science, 2008, 20, 299-310.	2.1	9
79	Degradation mechanism of automatic transmission fluid by water as a contaminant. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229, 74-85.	1.8	9
80	Surface chemistry of wet clutch influenced by water contamination in automatic transmission fluids. Tribology International, 2016, 96, 395-401.	5.9	8
81	Formation of Boundary Film from Ionic Liquids Enhanced by Additives. Applied Sciences (Switzerland), 2017, 7, 433.	2.5	8
82	Tribochemical approach toward mechanism for synergism of lubricant additives on antiwear and friction reducing properties. Tribology and Interface Engineering Series, 2005, 48, 259-268.	0.0	7
83	Study on Decomposition of Multialkylated Cyclopentane Oil with Sulfur-Containing Additive on the Nascent Steel Surface. Tribology Online, 2007, 2, 105-109.	0.9	7
84	Investigation of Tribochemical Reactions by Organic Sulfides on Nascent Metal Surfaces. Tribology Online, 2007, 2, 89-92.	0.9	7
85	Methionine as a Friction Modifier for Tungsten Carbide-Functionalized Surfaces via in Situ Tribo-Chemical Reactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 7030-7039.	6.7	6
86	Additive Effect for Environmental Lubricants—Decreased Phosphorus Contents in Low Viscosity Base Oils for Antiwear Performance—. Journal of the Japan Petroleum Institute, 2006, 49, 268-273.	0.6	6
87	Surface Chemistry for Improvement in Load-Carrying Capacity of Poly(Ether-Ether-Ketone)-Based Materials by Poly(Tetrafluoroethylene). Tribology Online, 2008, 3, 190-194.	0.9	6
88	Lubricities of Super Fine SiO ₂ Particle as a Solid Lubricant. Journal of the Ceramic Society of Japan, 1997, 105, 867-870.	1.3	5
89	Effect of alkenes on the antiwear mechanism of dialkyl hydrogen phosphites. Lubrication Science, 2001, 13, 219-230.	2.1	5
90	Effect of self-assembled monolayers modified slider on head-disk tribology under volatile organic contamination. Tribology Letters, 2007, 27, 137-143.	2.6	5

Ichiro Minami

#	Article	IF	CITATIONS
91	Coating″ubricant combination for improving triboâ€system performance. Lubrication Science, 2014, 26, 375-386.	2.1	5
92	Tribology in Space Robotic Actuators: Experimental Method for Evaluation and Analysis of Gearboxes. Aerospace, 2021, 8, 75.	2.2	5
93	Tribology of Ionic Liquids. Hyomen Kagaku, 2007, 28, 311-317.	0.0	5
94	Influence of aldehydes in make-up oils on antioxidation properties. Lubrication Science, 1995, 7, 319-331.	2.1	4
95	Surface Chemistry of Aluminium Alloy Slid against Steel Lubricated by Organic Friction Modifier in Hydrocarbon Oil. Advances in Tribology, 2012, 2012, 1-7.	2.1	4
96	Additives for Environmentally Adapted Lubricants - Tribo Film Formation. Tribology Online, 2008, 3, 168-172.	0.9	4
97	Investigation of wear mechanism by organic sulphides in vegetable oils. Lubrication Science, 2007, 19, 113-126.	2.1	3
98	Scoring-Load Capacities of Vegetable Oils. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2005, 71, 2657-2664.	0.2	2
99	Effect of volatile organic contamination on head-disk interface tribology and a method for its reduction. Tribology Letters, 2006, 23, 145-154.	2.6	2
100	A Cylinder and Assembled Four-Block Type Tribo-Test: Novel Method to Study Tribo-Chemistry of Lubricant and Material. Tribology Online, 2007, 2, 40-43.	0.9	2
101	Title is missing!. Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1981, 1981, 776-784.	0.1	1
102	A Novel Tool for Mechanistic Investigation of Boundary Lubrication: Stable Isotopic Tracers. , 0, , .		1
103	Proposal of Lubricant Maintenance by Monitoring Peroxide Value. Journal of the Japan Petroleum Institute, 2009, 52, 351-356.	0.6	1
104	ã,ª,ªãf³æ¶²ä½"ã®ãf^ãf©ã,ªfœãfã,,ãf¼ç‰¹æ€§ãëæ∙»åŠå‰ã¤ã,^ã,‹æ"¹å−". Journal of the Vacuum Society o	fJapoana, 20	008151, 476-4
105	Effect of Anti-Wear Additives on Seizure Resistance of Vegetable Oils in Four-Ball Test. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2004, 70, 554-559.	0.2	0
106	Chemical Activation of Gold Surface by Mechanical Contacts. Hyomen Kagaku, 2007, 28, 513-517.	0.0	0
107	Tribo-chemistry of Boundary Film Studied by Stable Isotopic Tracers. SAE International Journal of Fuels and Lubricants, 0, 1, 1524-1533.	0.2	0

108 Ionic Liquid Lubricants. , 2013, , 1866-1866.

#	Article	IF	CITATIONS
109	Antioxidation Properties of Zinc Dialkyldithiophosphate in the Presence of Organic Oxides Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1995, 38, 19-24.	0.1	0
110	Synthesis and synthetic applications of (4-hydroxyphenyl)perfluoroalkylmethanols. Tetrahedron, 2022, 104, 132574.	1.9	0