Jean Sébastien Saulnier-Blache

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6688659/publications.pdf

Version: 2024-02-01

83 papers 5,979 citations

71102 41 h-index 76 g-index

87 all docs 87 docs citations

87 times ranked

5700 citing authors

#	Article	IF	CITATIONS
1	Proteomic Analysis of Mouse Kidney Tissue Associates Peroxisomal Dysfunction with Early Diabetic Kidney Disease. Biomedicines, 2022, 10, 216.	3.2	4
2	Mapping of the amniotic fluid proteome of fetuses with congenital anomalies of the kidney and urinary tract identifies plastin 3 as a protein involved in glomerular integrity. Journal of Pathology, 2021, 254, 575-588.	4. 5	4
3	The low affinity p75 neurotrophin receptor is down-regulated in congenital anomalies of the kidney and the urinary tract: Possible involvement in early nephrogenesis. Biochemical and Biophysical Research Communications, 2020, 533, 786-791.	2.1	3
4	Connectivity mapping of glomerular proteins identifies dimethylaminoparthenolide as a new inhibitor of diabetic kidney disease. Scientific Reports, 2020, 10, 14898.	3.3	14
5	The CKD plasma lipidome varies with disease severity and outcome. Journal of Clinical Lipidology, 2019, 13, 176-185.e8.	1.5	13
6	Proteomics based identification of KDM5 histone demethylases associated with cardiovascular disease. EBioMedicine, 2019, 41, 91-104.	6.1	23
7	Systems biology identifies cytosolic PLA2 as a target in vascular calcification treatment. JCI Insight, 2019, 4, .	5.0	25
8	Ldlr and ApoE mice better mimic the human metabolite signature of increased carotid intima media thickness compared to other animal models of cardiovascular disease. Atherosclerosis, 2018, 276, 140-147.	0.8	13
9	Increased urine acylcarnitines in diabetic ApoE -/- mice: Hydroxytetradecadienoylcarnitine (C14:2-OH) reflects diabetic nephropathy in a context of hyperlipidemia. Biochemical and Biophysical Research Communications, 2017, 487, 109-115.	2.1	21
10	Urinary lysophopholipids are increased in diabetic patients with nephropathy. Journal of Diabetes and Its Complications, 2017, 31, 1103-1108.	2.3	24
11	Lysophosphatidic Acid Protects Against Endotoxin-Induced Acute Kidney Injury. Inflammation, 2017, 40, 1707-1716.	3.8	20
12	Increased urinary lysophosphatidic acid in mouse with subtotal nephrectomy: potential involvement in chronic kidney disease. Journal of Physiology and Biochemistry, 2016, 72, 803-812.	3.0	18
13	Short-term and rapid effects of lysophosphatidic acid on human adipose cell lipolytic and glucose uptake activities. AIMS Molecular Science, 2016, 3, 222-237.	0.5	10
14	Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS ONE, 2015, 10, e0131416.	2.5	54
15	Autotaxin Downregulates LPSâ€Induced Microglia Activation and Proâ€Inflammatory Cytokines Production. Journal of Cellular Biochemistry, 2014, 115, 2123-2132.	2.6	46
16	Involvement of autotaxin/lysophosphatidic acid signaling in obesity and impaired glucose homeostasis. Biochimie, 2014, 96, 140-143.	2.6	80
17	Pro-fibrotic activity of lysophosphatidic acid in adipose tissue: In vivo and in vitro evidence. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 88-96.	2.4	19
18	Influence of secreted factors from human adipose tissue on glucose utilization and proinflammatory reaction. Journal of Physiology and Biochemistry, 2013, 69, 625-632.	3.0	4

#	Article	IF	Citations
19	Lysophosphatidic acid impairs glucose homeostasis and inhibits insulin secretion in high-fat diet obese mice. Diabetologia, 2013, 56, 1394-1402.	6.3	70
20	Which bovine endometrial cells are the source of and target for lysophosphatidic acid?. Reproductive Biology, 2013, 13, 100-103.	1.9	10
21	Up-to-Date on Novel "Adipocrines― , 2013, , 213-227.		0
22	Plasticity-related gene-1 inhibits lysophosphatidic acid-induced vascular smooth muscle cell migration and proliferation and prevents neointima formation. American Journal of Physiology - Cell Physiology, 2012, 303, C1104-C1114.	4.6	7
23	Cell Autonomous Lipin 1 Function Is Essential for Development and Maintenance of White and Brown Adipose Tissue. Molecular and Cellular Biology, 2012, 32, 4794-4810.	2.3	40
24	Depot-specific regulation of autotaxin with obesity in human adipose tissue. Journal of Physiology and Biochemistry, 2012, 68, 635-644.	3.0	50
25	Autotaxin protects microglial cells against oxidative stress. Free Radical Biology and Medicine, 2012, 52, 516-526.	2.9	42
26	Lipoprotein-Derived Lysophosphatidic Acid Promotes Atherosclerosis by Releasing CXCL1Âfrom the Endothelium. Cell Metabolism, 2011, 13, 592-600.	16.2	176
27	Lysophosphatidic acid-1-receptor targeting agents for fibrosis. Expert Opinion on Investigational Drugs, 2011, 20, 657-667.	4.1	72
28	Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid. Journal of Lipid Research, 2011, 52, 1247-1255.	4.2	153
29	A Hypomorphic Mutation in Lpin1 Induces Progressively Improving Neuropathy and Lipodystrophy in the Rat. Journal of Biological Chemistry, 2011, 286, 26781-26793.	3.4	30
30	Atherosclerotic Lesion Progression Changes Lysophosphatidic Acid Homeostasis to Favor its Accumulation. American Journal of Pathology, 2010, 176, 3073-3084.	3.8	58
31	Cancer Cell Expression of Autotaxin Controls Bone Metastasis Formation in Mouse through Lysophosphatidic Acid-Dependent Activation of Osteoclasts. PLoS ONE, 2010, 5, e9741.	2.5	101
32	Altered food consumption in mice lacking lysophosphatidic acid receptor-1. Journal of Physiology and Biochemistry, 2009, 65, 345-350.	3.0	27
33	Seipin deficiency alters fatty acid î"9 desaturation and lipid droplet formation in Berardinelli-Seip congenital lipodystrophy. Biochimie, 2009, 91, 796-803.	2.6	118
34	Anticancer activity of FTY720: Phosphorylated FTY720 inhibits autotaxin, a metastasis-enhancing and angiogenic lysophospholipase D. Cancer Letters, 2008, 266, 203-208.	7.2	53
35	Lysophosphatidic acid and renal fibrosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 582-587.	2.4	78
36	Murine and Human Autotaxin \hat{l}_{\pm} , \hat{l}_{-}^2 , and \hat{l}_{-}^3 Isoforms. Journal of Biological Chemistry, 2008, 283, 7776-7789.	3.4	109

#	Article	IF	Citations
37	S32826, A Nanomolar Inhibitor of Autotaxin: Discovery, Synthesis and Applications as a Pharmacological Tool. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 809-819.	2.5	89
38	Phosphatidic acid mediates demyelination in $\langle i \rangle$ Lpin $1 \langle i \rangle$ mutant mice. Genes and Development, 2008, 22, 1647-1661.	5.9	122
39	LPA1 Receptor Activation Promotes Renal Interstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2007, 18, 3110-3118.	6.1	185
40	Secretion and lysophospholipase D activity of autotaxin by adipocytes are controlled by N-glycosylation and signal peptidase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 93-102.	2.4	35
41	Adipogenesis-related increase of semicarbazide-sensitive amine oxidase and monoamine oxidase in human adipocytes. Biochimie, 2007, 89, 916-925.	2.6	63
42	TNFα upâ€regulates apelin expression in human and mouse adipose tissue. FASEB Journal, 2006, 20, 1528-1530.	0.5	197
43	Short- and long-term insulin-like effects of monoamine oxidases and semicarbazide-sensitive amine oxidase substrates in cultured adipocytes. Metabolism: Clinical and Experimental, 2006, 55, 1397-1405.	3.4	34
44	Autotaxin, a Secreted Lysophospholipase D, Is Essential for Blood Vessel Formation during Development. Molecular and Cellular Biology, 2006, 26, 5015-5022.	2.3	496
45	Production of Lysophosphatidic Acid in Blister Fluid: Involvement of a Lysophospholipase D Activity. Journal of Investigative Dermatology, 2005, 125, 421-427.	0.7	55
46	Potential involvement of adipocyte insulin resistance in obesity-associated up-regulation of adipocyte lysophospholipase D/autotaxin expression. Diabetologia, 2005, 48, 569-577.	6.3	104
47	Lysophosphatidic Acid Inhibits Adipocyte Differentiation via Lysophosphatidic Acid 1 Receptor-dependent Down-regulation of Peroxisome Proliferator-activated Receptor Î ³ 2. Journal of Biological Chemistry, 2005, 280, 14656-14662.	3.4	135
48	Apelin, a Newly Identified Adipokine Up-Regulated by Insulin and Obesity. Endocrinology, 2005, 146, 1764-1771.	2.8	761
49	Adipokine Expression Profile in Adipocytes of Different Mouse Models of Obesity. Hormone and Metabolic Research, 2005, 37, 761-767.	1.5	37
50	Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. Journal of Clinical Investigation, 2004, 114, 1714-1725.	8.2	340
51	Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. Journal of Clinical Investigation, 2004, 114, 1714-1725.	8.2	222
52	Autotaxin Is Released from Adipocytes, Catalyzes Lysophosphatidic Acid Synthesis, and Activates Preadipocyte Proliferation. Journal of Biological Chemistry, 2003, 278, 18162-18169.	3.4	207
53	Culture of Human Adipose Tissue Explants Leads to Profound Alteration of Adipocyte Gene Expression. Hormone and Metabolic Research, 2003, 35, 158-163.	1.5	60
54	Human alpha 2A-adrenergic receptor gene expressed in transgenic mouse adipose tissue under the control of its regulatory elements. Journal of Molecular Endocrinology, 2002, 29, 251-264.	2.5	18

#	Article	IF	CITATIONS
55	Expression of Ectolipid Phosphate Phosphohydrolases in 3T3F442A Preadipocytes and Adipocytes. Journal of Biological Chemistry, 2002, 277, 23131-23136.	3.4	41
56	Secretion of a lysophospholipase D activity by adipocytes: involvement in lysophosphatidic acid synthesis. Journal of Lipid Research, 2002, 43, 904-910.	4.2	62
57	Secretion of a lysophospholipase D activity by adipocytes: involvement in lysophosphatidic acid synthesis. Journal of Lipid Research, 2002, 43, 904-10.	4.2	49
58	Lysophosphatidic acid synthesis and release. Prostaglandins and Other Lipid Mediators, 2001, 64, 1-10.	1.9	169
59	Endothelial Differentiation Gene-2 Receptor Is Involved in Lysophosphatidic Acid-dependent Control of 3T3F442A Preadipocyte Proliferation and Spreading. Journal of Biological Chemistry, 2001, 276, 11599-11605.	3.4	40
60	In Vitro and In Vivo Impairment of $\hat{l}\pm 2$ -Adrenergic Receptor-Dependent Antilipolysis by Fatty Acids in Human Adipose Tissue. Hormone and Metabolic Research, 2001, 33, 701-707.	1.5	7
61	LPA as a Paracrine Mediator of Adipocyte Growth and Function. Annals of the New York Academy of Sciences, 2000, 905, 159-164.	3 . 8	29
62	A simple and highly sensitive radioenzymatic assay for lysophosphatidic acid quantification. Journal of Lipid Research, 2000, 41, 1947-1951.	4.2	77
63	A simple and highly sensitive radioenzymatic assay for lysophosphatidic acid quantification. Journal of Lipid Research, 2000, 41, 1947-51.	4.2	65
64	Increase in Uncoupling Protein-2 mRNA Expression by BRL49653 and Bromopalmitate in Human Adipocytes. Biochemical and Biophysical Research Communications, 1999, 256, 138-141.	2.1	51
65	Ca2+-Independent Phospholipase A2 Is Required for α2-Adrenergic-Induced Preadipocyte Spreading. Biochemical and Biophysical Research Communications, 1999, 265, 572-576.	2.1	15
66	$G\hat{l}^2\hat{l}^3$ -independent Coupling of $\hat{l}\pm 2$ -Adrenergic Receptor to p21 in Preadipocytes. Journal of Biological Chemistry, 1998, 273, 15804-15810.	3.4	21
67	Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth Journal of Clinical Investigation, 1998, 101, 1431-1438.	8.2	122
68	Regulation of Fat-Cell Function by α2-Adrenergic Receptors. Advances in Pharmacology, 1997, 42, 496-498.	2.0	2
69	Functional Consequences of Constitutively Active $\hat{l}\pm2A$ -Adrenergic Receptor Expression in 3T3F442A Preadipocytes and Adipocytes. Biochemical and Biophysical Research Communications, 1997, 235, 765-773.	2.1	25
70	alpha2-Adrenoceptor stimulation promotes actin polymerization and focal adhesion in 3T3F442A and BFC-1beta preadipocytes Endocrinology, 1996, 137, 5220-5229.	2.8	21
71	alpha2-Adrenoceptor stimulation promotes actin polymerization and focal adhesion in 3T3F442A and BFC-1beta preadipocytes. Endocrinology, 1996, 137, 5220-5229.	2.8	5
72	Adrenergic Receptors and Fat Cells: Differential Recruitment by Physiological Amines and Homologous Regulation. Obesity, 1995, 3, 507S-514S.	4.0	43

#	Article	IF	CITATIONS
73	In vivo upregulation of adipocyte alpha 2-adrenoceptors by androgens is consequence of direct action on fat cells. American Journal of Physiology - Cell Physiology, 1994, 267, C926-C931.	4.6	14
74	Adipocyte $\hat{l}\pm 2A$ -adrenoceptor is the only $\hat{l}\pm 2$ -adrenoceptor regulated by testosterone. European Journal of Pharmacology, 1994, 269, 95-103.	2.6	7
75	Alpha 2-adrenergic stimulation promotes preadipocyte proliferation. Involvement of mitogen-activated protein kinases Journal of Biological Chemistry, 1994, 269, 30254-30259.	3.4	51
76	Alpha 2-adrenergic stimulation promotes preadipocyte proliferation. Involvement of mitogen-activated protein kinases. Journal of Biological Chemistry, 1994, 269, 30254-9.	3.4	42
77	Androgenic regulation of adipocyte alpha 2-adrenoceptor expression in male and female Syrian hamsters: proposed transcriptional mechanism Endocrinology, 1992, 130, 316-327.	2.8	14
78	Androgenic regulation of adipocyte alpha 2-adrenoceptor expression in male and female Syrian hamsters: proposed transcriptional mechanism. Endocrinology, 1992, 130, 316-327.	2.8	7
79	Coexistence of three \hat{I}^2 -adrenoceptor subtypes in white fat cells of various mammalian species. European Journal of Pharmacology, 1991, 199, 291-301.	3.5	188
80	Selective reduction of alpha 2-adrenergic responsiveness in hamster adipose tissue during prolonged starvation. American Journal of Physiology - Endocrinology and Metabolism, 1990, 259, E80-E88.	3.5	5
81	Hamster Adipocyte α ₂ -Adrenoceptor Changes during Fat Mass Modifications Are Not Directly Dependent on Adipose Tissue Norepinephrine Content. Endocrinology, 1990, 126, 2425-2434.	2.8	10
82	Photoperiodic Control of Adipocyte $\hat{1}\pm 2$ -Adrenoceptors in Syrian Hamsters: Role of Testosterone. Endocrinology, 1990, 127, 1245-1253.	2.8	11
83	Imidazolinic radioligands for the identification of hamster adipocyte α2-adrenoceptors. European Journal of Pharmacology, 1989, 171, 145-157.	3.5	26