Krista L Mcguire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6688221/publications.pdf

Version: 2024-02-01

45 papers 3,199 citations

212478 28 h-index 274796 44 g-index

46 all docs

46 docs citations

46 times ranked

6417 citing authors

#	Article	IF	CITATIONS
1	The â€~black box' of plant demography: how do seed type, climate and seed fungal communities affect grass seed germination?. New Phytologist, 2021, 231, 2319-2332.	3.5	6
2	Academic leaders must support inclusive scientific communities during COVID-19. Nature Ecology and Evolution, 2020, 4, 997-998.	3.4	44
3	Soil microbial composition varies in response to coffee agroecosystem management. FEMS Microbiology Ecology, 2020, 96, .	1.3	16
4	The Role of Phosphorus Limitation in Shaping Soil Bacterial Communities and Their Metabolic Capabilities. MBio, 2020, 11 , .	1.8	69
5	Microbial Composition and Functional Diversity Differ Across Urban Green Infrastructure Types. Frontiers in Microbiology, 2020, 11, 912.	1.5	29
6	Soil Microbial Assemblages Are Linked to Plant Community Composition and Contribute to Ecosystem Services on Urban Green Roofs. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	36
7	Evaluating the effects of canine urine on urban soil microbial communities. Urban Ecosystems, 2019, 22, 721-732.	1.1	7
8	Microbial Communities in Bioswale Soils and Their Relationships to Soil Properties, Plant Species, and Plant Physiology. Frontiers in Microbiology, 2019, 10, 2368.	1. 5	10
9	Associations among arbuscular mycorrhizal fungi and seedlings are predicted to change with tree successional status. Ecology, 2018, 99, 607-620.	1.5	19
10	Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature Microbiology, 2018, 3, 189-196.	5.9	136
11	Quantifying Urban Bioswale Nitrogen Cycling in the Soil, Gas, and Plant Phases. Water (Switzerland), 2018, 10, 1627.	1.2	6
12	Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils. Applied and Environmental Microbiology, 2017, 83, .	1.4	41
13	Consequences of tropical forest conversion to oil palm on soil bacterial community and network structure. Soil Biology and Biochemistry, 2017, 112, 258-268.	4.2	60
14	Arbuscular mycorrhizal fungal diversity and natural enemies promote coexistence of tropical tree species. Ecology, 2017, 98, 712-720.	1.5	29
15	Soil Type Has a Stronger Role than Dipterocarp Host Species in Shaping the Ectomycorrhizal Fungal Community in a Bornean Lowland Tropical Rain Forest. Frontiers in Plant Science, 2017, 8, 1828.	1.7	22
16	Links between plant and fungal diversity in habitat fragments of coastal shrubland. PLoS ONE, 2017, 12, e0184991.	1.1	11
17	Long″asting effects of land use history on soil fungal communities in secondâ€growth tropical rain forests. Ecological Applications, 2016, 26, 1881-1895.	1.8	64
18	Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14811-14816.	3.3	89

#	Article	IF	CITATIONS
19	Experimental Evidence that Fungi are Dominant Microbes in Carbon Content and Growth Response to Added Soluble Organic Carbon in Mossâ€rich Tundra Soil. Journal of Eukaryotic Microbiology, 2016, 63, 363-366.	0.8	2
20	Urban stress is associated with variation in microbial species composition—but not richness—in Manhattan. ISME Journal, 2016, 10, 751-760.	4.4	86
21	Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. Ecology Letters, 2015, 18, 807-816.	3.0	125
22	Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecology Letters, 2015, 18, 1397-1405.	3.0	183
23	Interactions among mutualism, competition, and predation foster species coexistence in diverse communities. Theoretical Ecology, 2015, 8, 297-312.	0.4	20
24	Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture. Frontiers in Microbiology, 2015, 6, 90.	1.5	26
25	Agricultural intensification and the functional capacity of soil microbes on smallholder African farms. Journal of Applied Ecology, 2015, 52, 744-752.	1.9	42
26	Bacteria and Fungi in Green Roof Ecosystems. Ecological Studies, 2015, , 175-191.	0.4	11
27	Responses of Soil Fungi to Logging and Oil Palm Agriculture in Southeast Asian Tropical Forests. Microbial Ecology, 2015, 69, 733-747.	1.4	87
28	Evolutionary histories of soil fungi are reflected in their largeâ€scale biogeography. Ecology Letters, 2014, 17, 1086-1093.	3.0	80
29	Shifts in fungal communities during decomposition of boreal forest litter. Fungal Ecology, 2014, 10, 58-69.	0.7	40
30	Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 2013, 22, 1261-1271.	2.7	365
31	Ectomycorrhizal-Dominated Boreal and Tropical Forests Have Distinct Fungal Communities, but Analogous Spatial Patterns across Soil Horizons. PLoS ONE, 2013, 8, e68278.	1.1	69
32	Digging the New York City Skyline: Soil Fungal Communities in Green Roofs and City Parks. PLoS ONE, 2013, 8, e58020.	1.1	174
33	Dramatic Improvements and Persistent Challenges for Women Ecologists. BioScience, 2012, 62, 189-196.	2.2	51
34	Fungal Community Composition in Neotropical Rain Forests: the Influence of Tree Diversity and Precipitation. Microbial Ecology, 2012, 63, 804-812.	1.4	121
35	Responses of sugar maple and hemlock seedlings to elevated carbon dioxide under altered above- and belowground nitrogen sources. Tree Physiology, 2011, 31, 391-401.	1.4	17
36	Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest. Oecologia, 2010, 164, 785-795.	0.9	84

3

#	Article	IF	Citations
37	Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biology and Biochemistry, 2010, 42, 529-535.	4.2	337
38	Nitrogen alters carbon dynamics during early succession in boreal forest. Soil Biology and Biochemistry, 2010, 42, 1157-1164.	4.2	96
39	Resistance of microbial and soil properties to warming treatment seven years after boreal fire. Soil Biology and Biochemistry, 2010, 42, 1872-1878.	4.2	81
40	Functional diversity in resource use by fungi. Ecology, 2010, 91, 2324-2332.	1.5	133
41	Functional Diversity in Resource Use By Fungi. Ecology, 2010, 91, 100319061621033.	1.5	1
42	Dual mycorrhizal colonization of forest-dominating tropical trees and the mycorrhizal status of non-dominant tree and liana species. Mycorrhiza, 2008, 18, 217-222.	1.3	74
43	Ectomycorrhizal Associations Function to Maintain Tropical Monodominance., 2008,, 287-302.		9
44	COMMON ECTOMYCORRHIZAL NETWORKS MAY MAINTAIN MONODOMINANCE IN A TROPICAL RAIN FOREST. Ecology, 2007, 88, 567-574.	1.5	179
45	Recruitment dynamics and ectomycorrhizal colonization of Dicymbe corymbosa, a monodominant tree in the Guiana Shield. Journal of Tropical Ecology, 2007, 23, 297-307.	0.5	12