Ya-Kun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6688121/publications.pdf

Version: 2024-02-01

		257357	345118
38	4,277	24	36
papers	citations	h-index	g-index
38	38	38	4825
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Exciplex host coupled with a micro-cavity enabling high efficiency OLEDs with narrow emission profile. Journal of Materials Chemistry C, 2022, 10, 5666-5671.	2.7	4
2	In Situ Inorganic Ligand Replenishment Enables Bandgap Stability in Mixedâ€Halide Perovskite Quantum Dot Solids. Advanced Materials, 2022, 34, e2200854.	11.1	82
3	Energy Transfer between Size-Controlled CsPbl ₃ Quantum Dots for Light-Emitting Diode Application. ACS Applied Materials & Diode Application.	4.0	9
4	Singleâ€Layer Sheets of Alkylammonium Lead Iodide Perovskites with Tunable and Stable Green Emission for White Lightâ€Emitting Devices. Advanced Optical Materials, 2022, 10, .	3.6	2
5	Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19042-19047.	4.0	12
6	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized α sPbI 3 Perovskite. Angewandte Chemie, 2021, 133, 16300-16306.	1.6	1
7	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized αâ€CsPbl ₃ Perovskite. Angewand Chemie - International Edition, 2021, 60, 16164-16170.	lte 7.2	210
8	Quantum Dot Selfâ€Assembly Enables Lowâ€Threshold Lasing. Advanced Science, 2021, 8, e2101125.	5.6	28
9	Bright and Stable Light-Emitting Diodes Based on Perovskite Quantum Dots in Perovskite Matrix. Journal of the American Chemical Society, 2021, 143, 15606-15615.	6.6	94
10	Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 2021, 599, 594-598.	13.7	358
11	Donor-spiro-acceptor architecture for green thermally activated delayed fluorescence (TADF) emitter. Organic Electronics, 2020, 77, 105520.	1.4	11
12	Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nature Photonics, 2020, 14, 171-176.	15.6	303
13	Through Space Charge Transfer for Efficient Skyâ€Blue Thermally Activated Delayed Fluorescence (TADF) Emitter with Unconjugated Connection. Advanced Optical Materials, 2020, 8, 1901150.	3.6	67
14	Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Science Advances, 2020, 6, .	4.7	135
15	Circularly Polarized Thermally Activated Delayed Fluorescence Emitters in Through-Space Charge Transfer on Asymmetric Spiro Skeletons. Journal of the American Chemical Society, 2020, 142, 17756-17765.	6.6	174
16	Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters. Nature Communications, 2020, 11, 3674.	5.8	112
17	Chloride Insertion–Immobilization Enables Bright, Narrowband, and Stable Blue-Emitting Perovskite Diodes. Journal of the American Chemical Society, 2020, 142, 5126-5134.	6.6	116
18	Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nature Communications, 2020, 11, 1257.	5.8	180

#	Article	IF	CITATIONS
19	Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nature Nanotechnology, 2020, 15, 668-674.	15.6	541
20	Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Advanced Materials, 2020, 32, e1907058.	11.1	148
21	High Color Purity Leadâ€Free Perovskite Lightâ€Emitting Diodes via Sn Stabilization. Advanced Science, 2020, 7, 1903213.	5.6	146
22	Thermal unequilibrium of strained black CsPbI ₃ thin films. Science, 2019, 365, 679-684.	6.0	444
23	The roles of thermally activated delayed fluorescence sensitizers for efficient red fluorescent organic light-emitting diodes with D–A–A type emitters. Materials Chemistry Frontiers, 2019, 3, 161-167.	3.2	15
24	One-shot triphenylamine/phenylketone hybrid as a bipolar host material for efficient red phosphorescent organic light-emitting diodes. Synthetic Metals, 2019, 254, 42-48.	2.1	4
25	Deep-blue thermally activated delayed fluorescence materials with high glass transition temperature. Journal of Luminescence, 2019, 206, 146-153.	1.5	9
26	Tilted Spiroâ€Type Thermally Activated Delayed Fluorescence Host for â‰^100% Exciton Harvesting in Red Phosphorescent Electronics with Ultralow Doping Ratio. Advanced Functional Materials, 2018, 28, 1706228.	7.8	62
27	Thermally activated delayed fluorescence sensitizer for D–A–A type emitters with orange-red light emission. Journal of Materials Chemistry C, 2018, 6, 10030-10035.	2.7	17
28	Management of excitons for highly efficient organic light-emitting diodes with reduced triplet exciton quenching: synergistic effects of exciplex and quantum well structure. Journal of Materials Chemistry C, 2018, 6, 342-349.	2.7	27
29	Over 10% EQE Nearâ€Infrared Electroluminescence Based on a Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2017, 27, 1700986.	7.8	236
30	Donorâ^Ïfâ€"Acceptor Molecules for Green Thermally Activated Delayed Fluorescence by Spatially Approaching Spiro Conformation. Organic Letters, 2017, 19, 3155-3158.	2.4	51
31	White Organic LED with a Luminous Efficacy Exceeding 100 lm W ^{â°1} without Light Outâ€Coupling Enhancement Techniques. Advanced Functional Materials, 2017, 27, 1701314.	7.8	157
32	D–A—Aâ€Type Emitter Featuring Benzo[c][1,2,5]thiadiazole and Polar CN Bond as Tandem Acceptor for Highâ€Performance Nearâ€Infrared Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2017, 5, 1700566.	3.6	22
33	Dopantâ€Free Spiroâ€Triphenylamine/Fluorene as Holeâ€Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability. Advanced Functional Materials, 2016, 26, 1375-1381.	7.8	226
34	Thermally Activated Delayed Fluorescence Material as Host with Novel Spiroâ€Based Skeleton for High Power Efficiency and Low Rollâ€Off Blue and White Phosphorescent Devices. Advanced Functional Materials, 2016, 26, 7929-7936.	7.8	84
35	Pure Hydrocarbon Hosts for â‰^100% Exciton Harvesting in Both Phosphorescent and Fluorescent Lightâ€Emitting Devices. Advanced Materials, 2015, 27, 4213-4217.	11.1	165
36	A facile way to synthesize high-triplet-energy hosts for blue phosphorescent organic light-emitting diodes with high glass transition temperature and low driving voltage. Dyes and Pigments, 2015, 122, 6-12.	2.0	19

YA-Kun Wang

#	Article	IF	CITATION
37	Selfâ€Aligned Nonâ€Centrosymmetric Conjugated Molecules Enable Electroâ€Optic Perovskites. Advanced Optical Materials, 0, , 2100730.	3.6	6
38	Efficient red organic LEDs via combination of exciplex host and micro-cavity. Materials Chemistry Frontiers, $0, , .$	3.2	0