Kai Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/668772/publications.pdf Version: 2024-02-01

KAL TANC

#	Article	IF	CITATIONS
1	When microbial electrochemistry meets UV: The applicability to high-strength real pharmaceutical industry wastewater. Journal of Hazardous Materials, 2022, 423, 127151.	12.4	9
2	Polishing micropollutants in municipal wastewater, using biogenic manganese oxides in a moving bed biofilm reactor (BioMn-MBBR). Journal of Hazardous Materials, 2022, 427, 127889.	12.4	13
3	Selective removal of cationic organic pollutants using disulfide-linked polymer. Separation and Purification Technology, 2022, 288, 120522.	7.9	10
4	Elimination of recalcitrant micropollutants by medium pressure UV-catalyzed bioelectrochemical advanced oxidation process: Influencing factors, transformation pathway and toxicity assessment. Science of the Total Environment, 2022, 828, 154543.	8.0	6
5	Engineered manganese redox cycling in anaerobic–aerobic MBBRs for utilisation of biogenic manganese oxides to efficiently remove micropollutants. Chemical Engineering Journal, 2022, 446, 136998.	12.7	3
6	Efficient recovery of dissolved Fe(II) from near neutral pH Fenton via microbial electrolysis. Journal of Hazardous Materials, 2022, 436, 129196.	12.4	9
7	Impact of intermittent feeding on polishing of micropollutants by moving bed biofilm reactors (MBBR). Journal of Hazardous Materials, 2021, 403, 123536.	12.4	35
8	Degradation of metoprolol from wastewater in a bio-electro-Fenton system. Science of the Total Environment, 2021, 771, 145385.	8.0	25
9	A novel persulfate-photo-bioelectrochemical hybrid system promoting the degradation of refractory micropollutants at neutral pH. Journal of Hazardous Materials, 2021, 416, 125905.	12.4	8
10	Oxidative Degradation of Tetracycline by Magnetite and Persulfate: Performance, Water Matrix Effect, and Reaction Mechanism. Nanomaterials, 2021, 11, 2292.	4.1	20
11	Cost-efficient microbial electrosynthesis of hydrogen peroxide on a facile-prepared floating electrode by entrapping oxygen. Bioresource Technology, 2021, 342, 125995.	9.6	9
12	Regeneration of Fe(II) from Fenton-derived ferric sludge using a novel biocathode. Bioresource Technology, 2020, 318, 124195.	9.6	29
13	An innovative microbial electrochemical ultraviolet photolysis cell (MEUC) for efficient degradation of carbamazepine. Water Research, 2020, 187, 116451.	11.3	29
14	Removal of Pharmaceuticals, Toxicity and Natural Fluorescence by Ozonation in Biologically Pre-Treated Municipal Wastewater, in Comparison to Subsequent Polishing Biofilm Reactors. Water (Switzerland), 2020, 12, 1059.	2.7	8
15	Municipal wastewater treatment targeting pharmaceuticals by a pilot-scale hybrid attached biofilm and activated sludge system (Hybasâ"¢). Chemosphere, 2020, 259, 127397.	8.2	25
16	Degradation of pharmaceuticals from wastewater in a 20-L continuous flow bio-electro-Fenton (BEF) system. Science of the Total Environment, 2020, 727, 138684.	8.0	49
17	Removal of sulfamethoxazole (SMX) in sulfate-reducing flocculent and granular sludge systems. Bioresource Technology, 2019, 288, 121592.	9.6	30
18	Removal of pharmaceuticals, toxicity and natural fluorescence through the ozonation of biologically-treated hospital wastewater, with further polishing via a suspended biofilm. Chemical Engineering Journal, 2019, 359, 321-330.	12.7	52

Kai Tang

#	Article	IF	CITATIONS
19	Removal of micropollutants during biological phosphorus removal: Impact of redox conditions in MBBR. Science of the Total Environment, 2019, 663, 496-506.	8.0	50
20	Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor (MBBR) utilising nitrifying and denitrifying processes. Bioresource Technology, 2018, 267, 677-687.	9.6	98
21	Influence of humic acid addition on the degradation of pharmaceuticals by biofilms in effluent wastewater. International Journal of Hygiene and Environmental Health, 2017, 220, 604-610.	4.3	46
22	Removal of pharmaceuticals in conventionally treated wastewater by a polishing moving bed biofilm reactor (MBBR) with intermittent feeding. Bioresource Technology, 2017, 236, 77-86.	9.6	93
23	Competitive Degradation of Steroid Estrogens by Potassium Permanganate Combined with Ultrasound. International Journal of Environmental Research and Public Health, 2015, 12, 15434-15448.	2.6	6
24	Degradation of 17β-estradiol by combined ultrasound/KMnO4in an aqueous system. Desalination and Water Treatment, 2015, 53, 493-500.	1.0	3
25	Parameters on 17βâ€Estradiol degradation by Ultrasound in an aqueous system. Journal of Chemical Technology and Biotechnology, 2014, 89, 322-327.	3.2	5