Wuanhua Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6687351/publications.pdf

Version: 2024-02-01

110	7,572	49	85
papers	citations	h-index	g-index
116	116	116	6075
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chiroptical switching of molecular universal joint triggered by complexation/release of a cation: A stepwise synergistic complexation. Chinese Chemical Letters, 2023, 34, 107558.	9.0	16
2	Bisindole [3]arenesâ€"Indolyl Macrocyclic Arenes Having Significant Iodine Capture Capacity. CCS Chemistry, 2022, 4, 1806-1814.	7.8	39
3	Optimizing Photochirogenic Performance by Solvent-Driven Conformational Fixation in Enantiodifferentiating Photoisomerization of $(\langle i \rangle Z \langle i \rangle)$ -Cyclooctene Mediated by Sensitizing \hat{I}^2 -Cyclodextrin Hosts. Journal of Organic Chemistry, 2022, 87, 1679-1688.	3.2	1
4	The More the Slower: Self-Inhibition in Supramolecular Chirality Induction, Memory, Erasure, and Reversion. Journal of the American Chemical Society, 2022, 144, 1455-1463.	13.7	38
5	γ-Cyclodextrin-based [2]rotaxane stoppered with gold(<scp>i</scp>)–ethynyl complexation: phosphorescent sensing for nitroaromatics. Chemical Communications, 2022, 58, 6284-6287.	4.1	6
6	Catalytic Chiral Photochemistry Sensitized by Chiral Hosts-Grafted Upconverted Nanoparticles. ACS Applied Materials & December 2022, 14, 21453-21460.	8.0	13
7	Host–Guest Complexationâ€Induced Aggregation Based on Pyreneâ€Modified Cyclodextrins for Improved Electronic Circular Dichroism and Circularly Polarized Luminescence. Angewandte Chemie, 2022, 134, .	2.0	28
8	Host–Guest Complexationâ€Induced Aggregation Based on Pyreneâ€Modified Cyclodextrins for Improved Electronic Circular Dichroism and Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2022, 61, .	13.8	58
9	BODIPY-conjugated bis-terpyridine Ru(<scp>ii</scp>) complexes showing ultra-long luminescence lifetimes and applications to triplet–triplet annihilation upconversion. Dalton Transactions, 2022, 51, 9314-9322.	3.3	7
10	Photochemical graft of γ-cyclodextrin's interior leading to in-situ charge-transfer complexes with unusual regioselectivity and its application in 3D photo-printing. Science China Chemistry, 2022, 65, 1149-1156.	8.2	11
11	Pyrene-tiaraed pillar[5]arene: Strong intramolecular excimer emission applicable for photo-writing. Chinese Chemical Letters, 2021, 32, 345-348.	9.0	35
12	Pressure-driven, solvation-directed planar chirality switching of cyclophano-pillar[5]arenes (molecular universal joints). Chemical Science, 2021, 12, 4361-4366.	7.4	33
13	Trace mild acid-catalysed Z → E isomerization of norbornene-fused stilbene derivatives: intelligent chiral molecular photoswitches with controllable self-recovery. Chemical Science, 2021, 12, 2614-2622.	7.4	12
14	Guest-Binding-Induced Interhetero Hosts Charge Transfer Crystallization: Selective Coloration of Commonly Used Organic Solvents. Journal of the American Chemical Society, 2021, 143, 1553-1561.	13.7	38
15	Supramolecular spectral/visual detection of urinary polyamines through synergetic/competitive complexation with \hat{l}^3 -CD and CB[7]. Chemical Communications, 2021, 57, 1806-1809.	4.1	10
16	Design and Synthesis of Fluorescent 1,3-Diaryl-Î ² -carbolines and 1,3-Diaryl-3,4-dihydro-Î ² -carbolines. ACS Omega, 2021, 6, 12238-12249.	3.5	6
17	Electrochemiluminescent Chiral Discrimination with a Pillar[5]arene Molecular Universal Joint-Coordinated Ruthenium Complex. Organic Letters, 2021, 23, 3885-3890.	4.6	26
18	Overtemperature-protection intelligent molecular chiroptical photoswitches. Nature Communications, 2021, 12, 2600.	12.8	66

#	Article	IF	CITATIONS
19	Recent progress on the enantioselective excited-state photoreactions by pre-arrangement of photosubstrate(s). Green Synthesis and Catalysis, 2021, 2, 131-144.	6.8	29
20	Solvent-Driven Chirality Switching of a Pillar[4]arene[1]quinone Having a Chiral Amine-Substituted Quinone Subunit. Frontiers in Chemistry, 2021, 9, 713305.	3.6	4
21	Strategies for combining triplet–triplet annihilation upconversion sensitizers and acceptors in a host matrix. Coordination Chemistry Reviews, 2021, 439, 213944.	18.8	22
22	Supramolecular Enantiodifferentiating Photocyclodimerization of 2â€Anthracenecarboxylic Acid Mediated by Bridged βâ€Cyclodextrins: Critical Effects of the Host Structure, pH and Coâ€Solvents. Chemistry - an Asian Journal, 2021, 16, 3091-3096.	3.3	4
23	Advances in Chirality Sensing with Macrocyclic Molecules. Chemosensors, 2021, 9, 279.	3.6	16
24	Supramolecular enantiomeric and structural differentiation of amino acid derivatives with achiral pillar[5] arene homologs. Chemical Communications, 2020, 56, 161-164.	4.1	67
25	A Supramolecular Strategy for Enhancing Photochirogenic Performance through Host/Guest Modification: Dicationic I ³ -Cyclodextrin-Mediated Photocyclodimerization of 2,6-Anthracenedicarboxylate. Organic Letters, 2020, 22, 9757-9761.	4.6	11
26	pH-Controlled Chirality Inversion in Enantiodifferentiating Photocyclodimerization of 2-Antharacenecarboxylic Acid Mediated by \hat{l}^3 -Cyclodextrin Derivatives. Organic Letters, 2020, 22, 5273-5278.	4.6	16
27	A Quinoline-Appended Cyclodextrin Derivative as a Highly Selective Receptor and Colorimetric Probe for Nucleotides. IScience, 2020, 23, 100927.	4.1	15
28	A dendritic DPA annihilatorâ€"syntheses, photophysical properties and application for co-assembling enhanced triplet-triplet annihilation upconversion. Dyes and Pigments, 2020, 182, 108643.	3.7	8
29	Fulleropillar[4]arene: The Synthesis and Complexation Properties. Organic Letters, 2020, 22, 2118-2123.	4.6	10
30	Redoxâ€Triggered Chirality Switching and Guestâ€Capture/Release with a Pillar[6]areneâ€Based Molecular Universal Joint. Angewandte Chemie - International Edition, 2020, 59, 8094-8098.	13.8	89
31	Redoxâ€Triggered Chirality Switching and Guestâ€Capture/Release with a Pillar[6]areneâ€Based Molecular Universal Joint. Angewandte Chemie, 2020, 132, 8171-8175.	2.0	20
32	Synergetic effects in the enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by β-cyclodextrin–pillar[5]arene-hybridized hosts. Chemical Communications, 2020, 56, 6197-6200.	4.1	21
33	Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures. Nature Chemistry, 2020, 12, 551-559.	13.6	90
34	Supramolecular Chiral Photochemistry. Series on Chemistry, Energy and the Environment, 2020, , 387-425.	0.3	0
35	Precise Manipulation of Temperatureâ€Driven Chirality Switching of Molecular Universal Joints through Solvent Mixing. Chemistry - A European Journal, 2019, 25, 12526-12537.	3.3	30
36	Synthesis, enantioseparation and photophysical properties of planar-chiral pillar[5] arene derivatives bearing fluorophore fragments. Beilstein Journal of Organic Chemistry, 2019, 15, 1601-1611.	2.2	10

#	Article	lF	Citations
37	Precise Manipulation of Temperatureâ€Driven Chirality Switching of Molecular Universal Joints through Solvent Mixing. Chemistry - A European Journal, 2019, 25, 12451-12451.	3.3	2
38	Efficient Triplet–Triplet Annihilation Upconversion with an Anti-Stokes Shift of 1.08 eV Achieved by Chemically Tuning Sensitizers. Journal of the American Chemical Society, 2019, 141, 15070-15077.	13.7	90
39	Assembly-enhanced triplet-triplet annihilation upconversion in the aggregation formed by Schiff-base $Pt(II)$ complex grafting-permethyl- \hat{I}^2 -CD and 9, 10-diphenylanthracence dimer. Chinese Chemical Letters, 2019, 30, 1979-1983.	9.0	25
40	Reversal of Regioselectivity during Photodimerization of 2-Anthracenecarboxylic Acid in a Water-Soluble Organic Cavitand. Organic Letters, 2019, 21, 7868-7872.	4.6	22
41	Resolution and Racemization of a Planar-Chiral A1/A2-Disubstituted Pillar[5]arene. Symmetry, 2019, 11, 773.	2.2	15
42	An Ultimate Stereocontrol in Supramolecular Photochirogenesis: Photocyclodimerization of 2-Anthracenecarboxylate Mediated by Sulfur-Linked \hat{I}^2 -Cyclodextrin Dimers. Journal of the American Chemical Society, 2019, 141, 9225-9238.	13.7	70
43	Effects of Temperature and Host Concentration on the Supramolecular Enantiodifferentiating [4 + 4] Photodimerization of 2-Anthracenecarboxylate through Triplet-Triplet Annihilation Catalyzed by Pt-Modified Cyclodextrins. Molecules, 2019, 24, 1502.	3.8	17
44	Room-temperature phosphorescent \hat{I}^3 -cyclodextrin-cucurbit [6] uril-cowheeled [4] rotaxanes for specific sensing of tryptophan. Chemical Communications, 2019, 55, 3156-3159.	4.1	62
45	Enhanced irregular photodimers and switched enantioselectivity by solvent and temperature in the photocyclodimerization of 2-anthracenecarboxylate with modified \hat{I}^2 -cyclodextrins. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 374-381.	3.9	15
46	Temperature-driven braking of \hat{i}^3 -cyclodextrin-curcubit[6]uril-cowheeled [4]rotaxanes. Chinese Chemical Letters, 2019, 30, 577-581.	9.0	21
47	Photocatalytic Supramolecular Enantiodifferentiating Dimerization of 2-Anthracenecarboxylic Acid through Triplet–Triplet Annihilation. Organic Letters, 2018, 20, 1680-1683.	4.6	59
48	Enhanced chiral recognition by î³-cyclodextrin–cucurbit[6]uril-cowheeled [4]pseudorotaxanes. Chemical Communications, 2018, 54, 2643-2646.	4.1	39
49	Supramolecular Photochirogenesis Driven by Higher-Order Complexation: Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylate to Slipped Cyclodimers via a 2:2 Complex with β-Cyclodextrin. Journal of the American Chemical Society, 2018, 140, 3959-3974.	13.7	88
50	Switched enantioselectivity by solvent components and temperature in photocyclodimerization of 2-anthracenecarboxylate with 6 A ,6 X -diguanidioâ ⁻² Î ³ -cyclodextrins. Chinese Chemical Letters, 2018, 29, 87-90.	9.0	32
51	A BODIPY-based near infrared fluorescent probe for Fe3+ in water. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 78-83.	3.9	22
52	Induced chirality sensing through formation and aggregation of the chiral imines double winged with pyrenes or perylenes. Chemical Communications, 2018, 54, 9206-9209.	4.1	13
53	Supramolecular Assemblyâ€Improved Triplet–Triplet Annihilation Upconversion in Aqueous Solution. Chemistry - A European Journal, 2018, 24, 16677-16685.	3.3	29
54	Triplet-Triplet Annihilation Upconversion in Molecular Aggregation Systems. Chinese Journal of Organic Chemistry, 2018, 38, 1377.	1.3	6

#	Article	IF	CITATIONS
55	Enantiodifferentiation in the Photoisomerization of (⟨i>Z⟨ i>,⟨i>Z⟨ i>)-1,3-Cyclooctadiene in the Cavity of γ-Cyclodextrin–Curcubit[6]uril-Wheeled [4]Rotaxanes with an Encapsulated Photosensitizer. Organic Letters, 2017, 19, 898-901.	4.6	70
56	Temperatureâ€Driven Planar Chirality Switching of a Pillar[5]areneâ€Based Molecular Universal Joint. Angewandte Chemie - International Edition, 2017, 56, 6869-6873.	13.8	161
57	Temperatureâ€Driven Planar Chirality Switching of a Pillar[5]areneâ€Based Molecular Universal Joint. Angewandte Chemie, 2017, 129, 6973-6977.	2.0	38
58	Photochirogenic nanosponges: phase-controlled enantiodifferentiating photoisomerization of (Z)-cyclooctene sensitized by pyromellitate-crosslinked linear maltodextrin. RSC Advances, 2017, 7, 17184-17192.	3.6	11
59	Chiral Buckybowl Molecules. Symmetry, 2017, 9, 174.	2.2	22
60	Inherently Chiral Azonia [6] helicene-Modified \hat{l}^2 -Cyclodextrin: Synthesis, Characterization, and Chirality Sensing of Underivatized Amino Acids in Water. Journal of Organic Chemistry, 2016, 81, 3430-3434.	3.2	57
61	Enhanced Triplet–Triplet Energy Transfer and Upconversion Fluorescence through Host–Guest Complexation. Journal of the American Chemical Society, 2016, 138, 15405-15412.	13.7	158
62	Enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate mediated by a self-assembled iron tetrahedral coordination cage. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 95-101.	3.9	18
63	Catalytic Supramolecular Photochirogenesis. Supramolecular Catalysis, 2015, 2, .	1.0	7
64	Solvent- and phase-controlled photochirogenesis. Enantiodifferentiating photoisomerization of (Z)-cyclooctene sensitized by cyclic nigerosylnigerose-based nanosponges crosslinked by pyromellitate. Organic and Biomolecular Chemistry, 2015, 13, 2905-2912.	2.8	13
65	Ammonia-Driven Chirality Inversion and Enhancement in Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylate Mediated by Diguanidino-l³-cyclodextrin. Journal of the American Chemical Society, 2014, 136, 6916-6919.	13.7	69
66	Hetero Bodipy-dimers as heavy atom-free triplet photosensitizers showing a long-lived triplet excited state for triplet–triplet annihilation upconversion. Chemical Communications, 2013, 49, 9009.	4.1	98
67	Red-light-absorbing diimine Pt(ii) bisacetylide complexes showing near-IR phosphorescence and long-lived 3IL excited state of Bodipy for application in triplet–triplet annihilation upconversion. Dalton Transactions, 2013, 42, 14374.	3.3	44
68	Triplet photosensitizers: from molecular design to applications. Chemical Society Reviews, 2013, 42, 5323.	38.1	1,234
69	Observation of the room temperature phosphorescence of Bodipy in visible light-harvesting Ru(ii) polyimine complexes and application as triplet photosensitizers for triplet–triplet-annihilation upconversion and photocatalytic oxidation. Journal of Materials Chemistry C, 2013, 1, 4577.	5.5	105
70	Intramolecular RET Enhanced Visible Light-Absorbing Bodipy Organic Triplet Photosensitizers and Application in Photooxidation and Triplet–Triplet Annihilation Upconversion. Journal of the American Chemical Society, 2013, 135, 10566-10578.	13.7	211
71	Red-light excitable fluorescent platinum(ii) bis(aryleneethynylene) bis(trialkylphosphine) complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion. Journal of Materials Chemistry C, 2013, 1, 705-716.	5.5	61
72	Visible light-harvesting trans bis(alkylphosphine) platinum(ii)-alkynyl complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion. Dalton Transactions, 2013, 42, 10694.	3.3	40

#	Article	IF	CITATIONS
73	Light-Harvesting Fullerene Dyads as Organic Triplet Photosensitizers for Triplet–Triplet Annihilation Upconversions. Journal of Organic Chemistry, 2012, 77, 5305-5312.	3.2	177
74	Room-Temperature Long-Lived Triplet Excited States of Naphthalenediimides and Their Applications as Organic Triplet Photosensitizers for Photooxidation and Triplet–Triplet Annihilation Upconversions. Journal of Organic Chemistry, 2012, 77, 3933-3943.	3.2	99
75	Transition metal complexes with strong absorption of visible light and long-lived triplet excited states: from molecular design to applications. RSC Advances, 2012, 2, 1712-1728.	3.6	176
76	Tuning the photophysical properties of N^N Pt(ii) bisacetylide complexes with fluorene moiety and its applications for triplet–triplet-annihilation based upconversion. Journal of Materials Chemistry, 2012, 22, 5319.	6.7	64
77	Styryl Bodipy-C ₆₀ Dyads as Efficient Heavy-Atom-Free Organic Triplet Photosensitizers. Organic Letters, 2012, 14, 2594-2597.	4.6	171
78	Using C60-bodipy dyads that show strong absorption of visible light and long-lived triplet excited states as organic triplet photosensitizers for triplet–triplet annihilation upconversion. Journal of Materials Chemistry, 2012, 22, 20273.	6.7	76
79	Room temperature long-lived triplet excited state of fluorescein in N^N Pt(II) bisacetylide complex and its applications for triplet–triplet annihilation based upconversions. Journal of Organometallic Chemistry, 2012, 713, 189-196.	1.8	13
80	Visibleâ€Lightâ€Harvesting Triphenylamine Ethynyl C ₆₀ â€BODIPY Dyads as Heavyâ€Atomâ€Free Organic Triplet Photosensitizers for Tripletâ€Triplet Annihilation Upconversion. Asian Journal of Organic Chemistry, 2012, 1, 264-273.	2.7	40
81	Rhenium(i) tricarbonyl polypyridine complexes showing strong absorption of visible light and long-lived triplet excited states as a triplet photosensitizer for triplet $\hat{\mathbf{a}}$ triplet annihilation upconversion. Dalton Transactions, 2012, 41, 8931.	3.3	72
82	Enhanced photooxidation sensitizers: the first examples of cyclometalated pyrene complexes of iridium(iii). Chemical Communications, 2012, 48, 10838.	4.1	43
83	Accessing the Long-Lived Triplet Excited States in Bodipy-Conjugated 2-(2-Hydroxyphenyl) Benzothiazole/Benzoxazoles and Applications as Organic Triplet Photosensitizers for Photooxidations. Journal of Organic Chemistry, 2012, 77, 6166-6178.	3.2	110
84	Visible-light harvesting iridium complexes as singlet oxygen sensitizers for photooxidation of 1,5-dihydroxynaphthalene. Chemical Communications, 2012, 48, 4169.	4.1	121
85	Efficient Triplet-Triplet Annihilation Upconversion with Platinum(II) Bis(arylacetylide) Complexes That Show Long-Lived Triplet Excited States. European Journal of Inorganic Chemistry, 2012, 2012, 3183-3190.	2.0	36
86	Ruthenium(II)–Polyimine–Coumarin Lightâ€Harvesting Molecular Arrays: Design Rationale and Application for Triplet–Tripletâ€Annihilationâ€Based Upconversion. Chemistry - A European Journal, 2012, 18, 4953-4964.	3.3	72
87	Longâ€Lived Roomâ€Temperature Deepâ€Redâ€Emissive Intraligand Triplet Excited State of Naphthalimide in Cyclometalated Ir ^{III Upconversion. Chemistry - A European Journal, 2012, 18, 8100-8112.}	3.3	55
88	Longâ€Lived Roomâ€Temperature Nearâ€IR Phosphorescence of BODIPY in a Visibleâ€Lightâ€Harvesting N^C^N Pt ^{II} –Acetylide Complex with a Directly Metalated BODIPY Chromophore. Chemistry - A European Journal, 2012, 18, 1961-1968.	3.3	140
89	The development of triplet-triplet annihilation upconversion. Scientia Sinica Chimica, 2012, 42, 1381-1398.	0.4	0
90	Accessing the long-lived emissive 3IL triplet excited states of coumarin fluorophores by direct cyclometallation and its application for oxygen sensing and upconversion. Dalton Transactions, 2011, 40, 5953.	3.3	114

#	Article	IF	Citations
91	Organic Triplet Sensitizer Library Derived from a Single Chromophore (BODIPY) with Long-Lived Triplet Excited State for Triplet–Triplet Annihilation Based Upconversion. Journal of Organic Chemistry, 2011, 76, 7056-7064.	3.2	353
92	Long-Lived Room Temperature Deep-Red/Near-IR Emissive Intraligand Triplet Excited State (³ IL) of Naphthalimide in Cyclometalated Platinum(II) Complexes and Its Application in Upconversion. Inorganic Chemistry, 2011, 50, 11446-11460.	4.0	82
93	Accessing the long-lived near-IR-emissive triplet excited state in naphthalenediimide with light-harvesting diimine platinum(ii) bisacetylide complex and its application for upconversion. Dalton Transactions, 2011, 40, 9085.	3.3	102
94	Tuning the emissive triplet excited states of platinum(ii) Schiff base complexes with pyrene, and application for luminescent oxygen sensing and triplet–triplet-annihilation based upconversions. Dalton Transactions, 2011, 40, 11550.	3.3	121
95	Visibleâ€Light Harvesting with Cyclometalated Iridium(III) Complexes Having Longâ€Lived ³ IL Excited States and Their Application in Triplet–Tripletâ€Annihilation Based Upconversion. European Journal of Inorganic Chemistry, 2011, 2011, 3165-3173.	2.0	103
96	Roomâ€Temperature Longâ€Lived ³ IL Excited State of Rhodamine in an <i>N</i> Vi> <i>N</i> Pt ^{II} Bis(acetylide) Complex with Intense Visibleâ€Light Absorption. European Journal of Inorganic Chemistry, 2011, 2011, 4527-4533.	2.0	57
97	Ruthenium(II) Polyimine Complexes with a Longâ€Lived ³ IL Excited State or a ³ MLCT/ ³ IL Equilibrium: Efficient Triplet Sensitizers for Lowâ€Power Upconversion. Angewandte Chemie - International Edition, 2011, 50, 1626-1629.	13.8	211
98	Ruthenium(II) Polyimine–Coumarin Dyad with Nonâ€emissive ³ IL Excited State as Sensitizer for Triplet–Triplet Annihilation Based Upconversion. Angewandte Chemie - International Edition, 2011, 50, 8283-8286.	13.8	109
99	The synthesis of 5,10,15,20-tetraarylporphyrins and their platinum(II) complexes as luminescent oxygen sensing materials. Dyes and Pigments, 2011, 89, 199-211.	3.7	61
100	Tuning the emission property of carbazole-caped cyclometalated platinum(II) complexes and its application for enhanced luminescent oxygen sensing. Journal of Organometallic Chemistry, 2011, 696, 2388-2398.	1.8	16
101	Enhanced luminescence oxygen sensing property of Ru(II) bispyridine complexes by ligand modification. Sensors and Actuators B: Chemical, 2010, 149, 395-406.	7.8	25
102	Synthesis of polypyridyl ruthenium complexes with 2-(1-aryl)-1H-imidazo[4,5-f]-1,10-phenanthroline ligand and its application for luminescent oxygen sensing. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 193-199.	0.4	8
103	Tuning the Emission Colour of Triphenylamine apped Cyclometallated Platinum(II) Complexes and Their Application in Luminescent Oxygen Sensing and Organic Lightâ€Emitting Diodes. European Journal of Inorganic Chemistry, 2010, 2010, 4683-4696.	2.0	61
104	Observation of Roomâ€Temperature Deepâ€Red/Nearâ€IR Phosphorescence of Pyrene with Cycloplatinated Complexes: An Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2010, 2010, 4470-4482.	2.0	52
105	Long-lived emissive intra-ligand triplet excited states (3IL): next generation luminescent oxygen sensing scheme and a case study with red phosphorescent diimine Pt(ii) bis(acetylide) complexes containing ethynylated naphthalimide or pyrene subunits. Analyst, The, 2010, 135, 2832.	3.5	72
106	A Highly Selective OFF-ON Red-Emitting Phosphorescent Thiol Probe with Large Stokes Shift and Long Luminescent Lifetime. Organic Letters, 2010, 12, 2876-2879.	4.6	176
107	Tuning the emission properties of cyclometalated platinum(II) complexes by intramolecular electron-sink/arylethynylated ligands and its application for enhanced luminescent oxygen sensing. Journal of Materials Chemistry, 2010, 20, 9775.	6.7	82
108	Effect of the Electron Donor/Acceptor Orientation on the Fluorescence Transduction Efficiency of the d-PET Effect of Carbazole-Based Fluorescent Boronic Acid Sensors. Journal of Organic Chemistry, 2010, 75, 2578-2588.	3.2	71

#	Article	lF	CITATIONS
109	Tuning the luminescence lifetimes of ruthenium(ii) polypyridine complexes and its application in luminescent oxygen sensing. Journal of Materials Chemistry, 2010, 20, 1953.	6.7	182
110	Real-time monitoring of luminescent lifetime changes of PtOEP oxygen sensing film with LED/photodiode-based time-domain lifetime device. Analyst, The, 2009, 134, 958.	3.5	39