
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6687275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implementation of an algorithm for automated phenotyping through plant 3D-modeling: A practical application on the early detection of water stress. Computers and Electronics in Agriculture, 2022, 197, 106937.	3.7	19
2	Priority for climate adaptation measures in European crop production systems. European Journal of Agronomy, 2022, 138, 126516.	1.9	23
3	A Novel Hyperspectral Method to Detect Moldy Core in Apple Fruits. Sensors, 2022, 22, 4479.	2.1	9
4	Use of Sentinel-2 Derived Vegetation Indices for Estimating fPAR in Olive Groves. Agronomy, 2022, 12, 1540.	1.3	7
5	Coupling proximal sensing, seasonal forecasts and crop modelling to optimize nitrogen variable rate application in durum wheat. Precision Agriculture, 2021, 22, 75-98.	3.1	19
6	Assessing climate change impacts on crops by adopting a set of crop performance indicators. Euro-Mediterranean Journal for Environmental Integration, 2021, 6, 1.	0.6	9
7	Yield Response of an Ensemble of Potato Crop Models to Elevated CO2 in Continental Europe. European Journal of Agronomy, 2021, 126, 126265.	1.9	6
8	Climate change impacts on the Alpine, Continental and Mediterranean grassland systems of Italy: A review. Italian Journal of Agronomy, 2021, 16, .	0.4	8
9	Methodology to assess the changing risk of yield failure due to heat and drought stress under climate change. Environmental Research Letters, 2021, 16, 104033.	2.2	6
10	Evaluating the Potential of Legumes to Mitigate N ₂ O Emissions From Permanent Grassland Using Processâ€Based Models. Global Biogeochemical Cycles, 2020, 34, e2020GB006561.	1.9	15
11	Understanding effects of genotype × environment × sowing window interactions for durum wheat in the Mediterranean basin. Field Crops Research, 2020, 259, 107969.	2.3	18
12	Expected Changes to Alpine Pastures in Extent and Composition under Future Climate Conditions. Agronomy, 2020, 10, 926.	1.3	21
13	Potential Impact of Climate Change on the Forest Coverage and the Spatial Distribution of 19 Key Forest Tree Species in Italy under RCP4.5 IPCC Trajectory for 2050s. Forests, 2020, 11, 934.	0.9	16
14	Performances Evaluation of a Low-Cost Platform for High-Resolution Plant Phenotyping. Sensors, 2020, 20, 3150.	2.1	14
15	Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models. Field Crops Research, 2020, 255, 107863.	2.3	23
16	Phenological Model Intercomparison for Estimating Grapevine Budbreak Date (Vitis vinifera L.) in Europe. Applied Sciences (Switzerland), 2020, 10, 3800.	1.3	20
17	Carbon sequestration capacity and productivity responses of Mediterranean olive groves under future climates and management options. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 467-491.	1.0	18
18	Combination of ground and remote sensing data to assess carbon stock changes in the main urban park of Florence. Urban Forestry and Urban Greening, 2019, 43, 126377.	2.3	7

#	Article	IF	CITATIONS
19	The human imperative of stabilizing global climate change at 1.5°C. Science, 2019, 365, .	6.0	498
20	Species distribution modelling to support forest management. A literature review. Ecological Modelling, 2019, 411, 108817.	1.2	116
21	Reply to Snowdon et al. and Piepho: Genetic response diversity to provide yield stability of cultivar groups deserves attention. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10627-10629.	3.3	7
22	Management and spatial resolution effects on yield and water balance at regional scale in crop models. Agricultural and Forest Meteorology, 2019, 275, 184-195.	1.9	22
23	Impacts of climate change on the gross primary production of Italian forests. Annals of Forest Science, 2019, 76, 1.	0.8	15
24	A simple model simulating development and growth of an olive grove. European Journal of Agronomy, 2019, 105, 129-145.	1.9	32
25	Modelling biological N fixation and grass-legume dynamics with process-based biogeochemical models of varying complexity. European Journal of Agronomy, 2019, 106, 58-66.	1.9	12
26	Decline in climate resilience of European wheat. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 123-128.	3.3	144
27	Effects of input data aggregation on simulated crop yields in temperate and Mediterranean climates. European Journal of Agronomy, 2019, 103, 32-46.	1.9	16
28	Global wheat production with 1.5 and 2.0°C above preâ€industrial warming. Global Change Biology, 2019, 25, 1428-1444.	4.2	107
29	Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, 25, 155-173.	4.2	312
30	Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agricultural and Forest Meteorology, 2019, 264, 351-362.	1.9	35
31	Modelling sugar and acid content in Sangiovese grapes under future climates: an Italian case study. Climate Research, 2019, 78, 211-224.	0.4	19
32	Reviewing climatic traits for the main forest tree species in Italy. IForest, 2019, 12, 173-180.	0.5	14
33	Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agricultural Systems, 2018, 159, 260-274.	3.2	68
34	Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agricultural Systems, 2018, 159, 209-224.	3.2	47
35	Late spring frost impacts on future grapevine distribution in Europe. Field Crops Research, 2018, 222, 197-208.	2.3	65
36	Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Global Change Biology, 2018, 24, 1291-1307.	4.2	149

#	Article	IF	CITATIONS
37	Sensitivity of European wheat to extreme weather. Field Crops Research, 2018, 222, 209-217.	2.3	101
38	Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions. Field Crops Research, 2018, 216, 75-88.	2.3	36
39	Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 2018, 9, 4249.	5.8	230
40	The response of process-based agro-ecosystem models to within-field variability in site conditions. Field Crops Research, 2018, 228, 1-19.	2.3	25
41	A model library to simulate grapevine growth and development: software implementation, sensitivity analysis and field level application. European Journal of Agronomy, 2018, 99, 92-105.	1.9	18
42	Simulation of Soil Organic Carbon Effects on Long-Term Winter Wheat (Triticum aestivum) Production Under Varying Fertilizer Inputs. Frontiers in Plant Science, 2018, 9, 1158.	1.7	21
43	Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe. European Journal of Agronomy, 2017, 84, 152-165.	1.9	35
44	Effectiveness of passive measures against climate change: Case studies in Central Italy. Building Simulation, 2017, 10, 459-479.	3.0	35
45	Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Science of the Total Environment, 2017, 598, 445-470.	3.9	157
46	Contribution of Crop Models to Adaptation in Wheat. Trends in Plant Science, 2017, 22, 472-490.	4.3	201
47	The implication of input data aggregation on up-scaling soil organic carbon changes. Environmental Modelling and Software, 2017, 96, 361-377.	1.9	28
48	Can conservation tillage mitigate climate change impacts in Mediterranean cereal systems? A soil organic carbon assessment using long term experiments. European Journal of Agronomy, 2017, 90, 96-107.	1.9	31
49	Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy, 2017, 82, 144-162.	1.9	84
50	Adopting soil organic carbon management practices in soils of varying quality: Implications and perspectives in Europe. Soil and Tillage Research, 2017, 165, 95-106.	2.6	57
51	A potato model intercomparison across varying climates and productivity levels. Global Change Biology, 2017, 23, 1258-1281.	4.2	90
52	Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations. PLoS ONE, 2016, 11, e0151782.	1.1	78
53	Spatial data integration for the environmental characterization of pasture macrotypes in the Italian Alps. Grass and Forage Science, 2016, 71, 219-234.	1.2	6
54	Rainfall regimes control C-exchange of Mediterranean olive orchard. Agriculture, Ecosystems and Environment, 2016, 233, 147-157.	2.5	13

#	Article	IF	CITATIONS
55	Climate change impacts and adaptation options in the Mediterranean basin. Regional Environmental Change, 2016, 16, 1859-1861.	1.4	18
56	Vineyards and Vineyard Management Related to Ecosystem Services: Experiences from a Wide Range of Enological Regions in the Context of Global Climate Change. Journal of Wine Economics, 2016, 11, 66-68.	0.4	3
57	Use of digital images to disclose canopy architecture in olive tree. Scientia Horticulturae, 2016, 209, 1-13.	1.7	24
58	Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. Journal of Agricultural Science, 2016, 154, 1218-1240.	0.6	70
59	Correction of a 1 km daily rainfall dataset for modelling forest ecosystem processes in Italy. Meteorological Applications, 2016, 23, 294-303.	0.9	18
60	A model-based assessment of adaptation options for Chianti wine production in Tuscany (Italy) under climate change. Regional Environmental Change, 2016, 16, 85-96.	1.4	24
61	Heat stress and crop yields in the Mediterranean basin: impact on expected insurance payouts. Regional Environmental Change, 2016, 16, 1877-1890.	1.4	11
62	Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops. Environmental Modelling and Software, 2016, 80, 100-112.	1.9	26
63	Interoperability of agronomic long term experiment databases and crop model intercomparison: the Italian experience. European Journal of Agronomy, 2016, 77, 209-222.	1.9	6
64	Climate Change and Grapevines: A Simulation Study for the Mediterranean Basin. Journal of Wine Economics, 2016, 11, 88-104.	0.4	30
65	Turning points in climate change adapatation. Ecology and Society, 2015, 20, .	1.0	15
66	Pastoral suitability driven by future climate change along the Apennines. Italian Journal of Agronomy, 2015, 10, 109.	0.4	10
67	Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 2015, 72, 287-303.	1.9	230
68	Modelling olive trees and grapevines in a changing climate. Environmental Modelling and Software, 2015, 72, 387-401.	1.9	87
69	Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Environmental Modelling and Software, 2015, 72, 402-417.	1.9	112
70	Crop rotation modelling—A European model intercomparison. European Journal of Agronomy, 2015, 70, 98-111.	1.9	125
71	The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and Protocols. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 191-220.	0.4	10
72	Uncertainties in Scaling-Up Crop Models for Large-Area Climate Change Impact Assessments. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 261-277.	0.4	11

#	Article	IF	CITATIONS
73	Conservation Agriculture and Climate Change. , 2015, , 579-620.		20
74	Grain filling duration and glutenin polymerization under variable nitrogen supply and environmental conditions for durum wheat. Field Crops Research, 2015, 171, 23-31.	2.3	23
75	Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables. Climate Research, 2015, 65, 141-157.	0.4	43
76	Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research, 2015, 65, 87-105.	0.4	122
77	Monthly-to-seasonal predictions of durum wheat yield over the Mediterranean Basin. Climate Research, 2015, 65, 7-21.	0.4	25
78	Modelling climate change impacts on crop production for food security. Climate Research, 2015, 65, 3-5.	0.4	10
79	Influence of Interannual Meteorological Variability on Yeast Content and Composition in Sangiovese Grapes. American Journal of Enology and Viticulture, 2014, 65, 375-380.	0.9	10
80	Designing a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy). Science of the Total Environment, 2014, 499, 497-509.	3.9	24
81	Chapter 11. Using mitigation and adaptation strategies to optimize crop yield and greenhouse gas emissions. , 2014, , 203-236.		Ο
82	Stakeholders. Advances in Global Change Research, 2013, , 23-37.	1.6	2
83	Physical and Socio-economic Indicators. Advances in Global Change Research, 2013, , 39-60.	1.6	Ο
84	Climate Impact Assessments. Advances in Global Change Research, 2013, , 61-104.	1.6	0
85	Integration of the Climate Impact Assessments with Future Projections. Advances in Global Change Research, 2013, , 105-162.	1.6	2
86	Synthesis and the Assessment of Adaptation Measures. Advances in Global Change Research, 2013, , 163-201.	1.6	0
87	Projected shifts of wine regions in response to climate change. Climatic Change, 2013, 119, 825-839.	1.7	199
88	Simulation of olive grove gross primary production by the combination of ground and multi-sensor satellite data. International Journal of Applied Earth Observation and Geoinformation, 2013, 23, 29-36.	1.4	13
89	Detection of variations in precipitation at different time scales of twentieth century at three locations of Italy. Weather and Climate Extremes, 2013, 2, 7-15.	1.6	13
90	Climate Change Impacts on Typical Mediterranean Crops and Evaluation of Adaptation Strategies to Cope With. Advances in Global Change Research, 2013, , 49-70.	1.6	12

#	Article	IF	CITATIONS
91	Olive trees as bioâ€indicators of climate evolution in the <scp>M</scp> editerranean <scp>B</scp> asin. Global Ecology and Biogeography, 2013, 22, 818-833.	2.7	59
92	Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. Journal of Agricultural Science, 2013, 151, 813-835.	0.6	82
93	Comparison of fire danger indices in the Mediterranean for present day conditions. IForest, 2012, 5, 197-203.	0.5	12
94	Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization. Regional Environmental Change, 2012, 12, 407-419.	1.4	70
95	Air temperature-related human health outcomes: Current impact and estimations of future risks in Central Italy. Science of the Total Environment, 2012, 441, 28-40.	3.9	44
96	Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Research, 2012, 133, 23-36.	2.3	269
97	Estimation of wheat production by the integration of MODIS and ground data. International Journal of Remote Sensing, 2011, 32, 1105-1123.	1.3	9
98	Probabilistic assessments of climate change impacts on durum wheat in the Mediterranean region. Natural Hazards and Earth System Sciences, 2011, 11, 1293-1302.	1.5	50
99	Energy and Water Use Related to the Cultivation of Energy Crops: a Case Study in the Tuscany Region. Ecology and Society, 2011, 16, .	1.0	15
100	Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy, 2011, 35, 103-114.	1.9	408
101	Climate change impact assessment: the role of climate extremes in crop yield simulation. Climatic Change, 2011, 104, 679-701.	1.7	210
102	Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Regional Environmental Change, 2011, 11, 553-567.	1.4	67
103	The responses of agriculture in Europe to climate change. Regional Environmental Change, 2011, 11, 151-158.	1.4	233
104	Climate change impact on the hydrological balance of the Itaipu Basin. Meteorological Applications, 2011, 18, 163-170.	0.9	5
105	Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitigation and Adaptation Strategies for Global Change, 2010, 15, 657-679.	1.0	97
106	Assessing risk and adaptation options to fires and windstorms in European forestry. Mitigation and Adaptation Strategies for Global Change, 2010, 15, 681-701.	1.0	87
107	Sustainability of dairy farming system in Tuscany in a changing climate. European Journal of Agronomy, 2010, 32, 80-90.	1.9	15
108	Validating an integrated strategy to model net land carbon exchange against aircraft flux measurements. Remote Sensing of Environment, 2010, 114, 1108-1116.	4.6	9

#	Article	IF	CITATIONS
109	Energy crops for biofuel production: Analysis of the potential in Tuscany. Biomass and Bioenergy, 2010, 34, 1041-1052.	2.9	19
110	Simulation of Mediterranean forest carbon pools under expected environmental scenarios. Canadian Journal of Forest Research, 2010, 40, 850-860.	0.8	17
111	Sowing date and nitrogen fertilisation effects on dry matter and nitrogen dynamics for durum wheat: An experimental and simulation study. Field Crops Research, 2010, 117, 245-257.	2.3	97
112	Modelling the forest carbon budget of a Mediterranean region through the integration of ground and satellite data. Ecological Modelling, 2009, 220, 330-342.	1.2	51
113	European winegrowers' perceptions of climate change impact and options for adaptation. Regional Environmental Change, 2009, 9, 61-73.	1.4	120
114	Climatic changes and associated impacts in the Mediterranean resulting from a 2°C global warming. Global and Planetary Change, 2009, 68, 209-224.	1.6	408
115	Plant Biometeorology and Adaptation. , 2009, , 107-129.		5
116	Yield modelling of Mediterranean crops: A probabilistic approach. IOP Conference Series: Earth and Environmental Science, 2009, 6, 022013.	0.2	0
117	Estimating net forest carbon fluxes by the integration of ground and remote sensing data. European Journal of Remote Sensing, 2009, , 97-108.	0.2	1
118	Reproduction of olive tree habitat suitability for global change impact assessment. Ecological Modelling, 2008, 218, 95-109.	1.2	36
119	The meteorological conditions associated with extreme fire risk in Italy and Greece: relevance to climate model studies. International Journal of Wildland Fire, 2008, 17, 155.	1.0	54
120	Integration of ground and satellite data to simulate forest carbon budget on regional scale. Proceedings of SPIE, 2007, , .	0.8	0
121	Application of BIOME-BGC to simulate Mediterranean forest processes. Ecological Modelling, 2007, 206, 179-190.	1.2	103
122	A simple model of regional wheat yield based on NDVI data. European Journal of Agronomy, 2007, 26, 266-274.	1.9	184
123	Modelling the impact of climate extremes: an overview of the MICE project. Climatic Change, 2007, 81, 163-177.	1.7	58
124	Growth and Quality Responses of Potato to Elevated [CO2]. Ecological Studies, 2006, , 105-119.	0.4	3
125	Potential impact of climate change on fire risk in the Mediterranean area. Climate Research, 2006, 31, 85-95.	0.4	403
126	Comparison of temperatures simulated by GCMs, RCMs and statistical downscaling: potential application in studies of future crop development. Climate Research, 2006, 30, 149-160.	0.4	31

#	Article	IF	CITATIONS
127	The Effect of Downy and Powdery Mildew on Grapevine (Vitis vinifera L.) Leaf Gas Exchange. Journal of Phytopathology, 2005, 153, 350-357.	0.5	51
128	Impacts of Present and Future Climate Variability on Agriculture and Forestry in the Temperate Regions: Europe. Climatic Change, 2005, 70, 117-135.	1.7	247
129	Detection of Variations in Air Temperature at Different Time Scales During the Period 1889–1998 at Firenze, Italy. Climatic Change, 2005, 72, 123-150.	1.7	23
130	Physiological and Yield Responses of Grapevine (Vitis viniferaL.) Exposed to Elevated CO2Concentrations in a Free Air CO2Enrichment (FACE). Journal of Crop Improvement, 2005, 13, 345-359.	0.9	8
131	Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements. Agricultural and Forest Meteorology, 2005, 135, 22-34.	1.9	97
132	Impacts of Present and Future Climate Variability on Agriculture and Forestry in the Temperate Regions: Europe. , 2005, , 117-135.		17
133	Analysis of Solanaceae Species Harvest-organ Growth by Linear Increase in Harvest Index and Harvest-organ Growth Rate. Journal of the American Society for Horticultural Science, 2005, 130, 799-805.	0.5	8
134	Multi-year simulation of Mediterranean forest transpiration by the integration of NOAA-AVHRR and ancillary data. International Journal of Remote Sensing, 2004, 25, 3929-3941.	1.3	12
135	Water use of irrigated potato (Solanum tuberosum L.) grown under free air carbon dioxide enrichment in central Italy. Agriculture, Ecosystems and Environment, 2003, 97, 65-80.	2.5	45
136	Derivation of LAI Estimates from NDVI and Conventional Data for the Simulaton of Forest Water Fluxes. Forestry Sciences, 2003, , 353-359.	0.4	0
137	Responses of Agricultural Crops to Free-Air CO2 Enrichment. Advances in Agronomy, 2002, , 293-368.	2.4	779
138	Calibration and application of FOREST-BGC in a Mediterranean area by the use of conventional and remote sensing data. Ecological Modelling, 2002, 154, 251-262.	1.2	42
139	Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 2002, 16, 239-262.	1.9	1,106
140	Effect of climatic conditions on tuber yield (Solanum tuberosum L.) in the European â€~CHIP' experiments. European Journal of Agronomy, 2002, 17, 243-255.	1.9	35
141	CO2 and ozone effects on canopy development of potato crops across Europe. European Journal of Agronomy, 2002, 17, 257-272.	1.9	30
142	Growth and marketable-yield responses of potato to increased CO2 and ozone. European Journal of Agronomy, 2002, 17, 273-289.	1.9	61
143	Chlorophyll concentration of potatoes grown under elevated carbon dioxide and/or ozone concentrations. European Journal of Agronomy, 2002, 17, 319-335.	1.9	54
144	Effects of elevated carbon dioxide and ozone on potato tuber quality in the European multiple-site experiment â€~CHIP-project'. European Journal of Agronomy, 2002, 17, 369-381.	1.9	62

#	Article	IF	CITATIONS
145	Modelling cropping systems—highlights of the symposium and preface to the special issues. European Journal of Agronomy, 2002, 18, 1-11.	1.9	44
146	Scaling Methods in Regional Integrated Assessments: From Points Upward and from Global Models Downwards. Integrated Assessment: an International Journal, 2002, 3, 167-187.	0.8	0
147	Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): I. Development and testing of the system for CO2 enrichment. European Journal of Agronomy, 2001, 14, 135-143.	1.9	26
148	Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. European Journal of Agronomy, 2001, 14, 145-155.	1.9	150
149	Four-channel tocography in uneventful pregnancies: a prospective study in primigravidas and multigravidas. Journal of the Society for Gynecologic Investigation, 2001, 8, 48-53.	1.9	3
150	The preterm prediction study: maternal serum relaxin, sonographic cervical length, and spontaneous preterm birth in twins. Journal of the Society for Gynecologic Investigation, 2001, 8, 39-42.	1.9	28
151	Extension of crop model outputs over the land surface by the application of statistical and neural network techniques to topographical and satellite data. Climate Research, 2001, 16, 237-246.	0.4	9
152	PARTITIONING OF GRAPEVINE BIOMASS IN THINNED SHOOTS. Acta Horticulturae, 2000, , 311-316.	0.1	0
153	Analysis of Seed Growth by Linear Increase in Harvest Index. Crop Science, 1999, 39, 486-493.	0.8	30
154	Free Air CO 2 Enrichment of potato (Solanum tuberosum L.): development, growth and yield. Global Change Biology, 1998, 4, 163-172.	4.2	153
155	Free Air CO 2 Enrichment of potato (Solanum tuberosum , L.): design and performance of the CO 2 â€fumigation system. Global Change Biology, 1997, 3, 417-427.	4.2	48
156	THE EFFECT OF ELEVATED CO2 CONCENTRATION ON GRAPEVINE GROWTH UNDER FIELD CONDITIONS. Acta Horticulturae, 1996, , 325-330.	0.1	9
157	The effect of free air carbon dioxide enrichment (FACE) and soil nitrogen availability on the photosynthetic capacity of wheat. Photosynthesis Research, 1996, 47, 281-290.	1.6	58
158	Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Climate Research, 1996, 7, 213-224.	0.4	159
159	Characterization of primary productivity levels of Niger by means of NOAA NDVI variations. Geocarto International, 1995, 10, 31-41.	1.7	12
160	Comparison of models to simulate leaf appearance in wheat. European Journal of Agronomy, 1995, 4, 15-25.	1.9	12
161	Different methods for separating diffuse and direct components of solar radiation and their application in crop growth models. Climate Research, 1992, 2, 47-54.	0.4	20
162	Influence of meteorological factors on primary production of Sahelian regions estimated by remote-sensing techniques. EPPO Bulletin, 1991, 21, 643-649.	0.6	0

#	Article	IF	CITATIONS
163	Estimating daily global radiation from air temperature and rainfall measurements. Climate Research, 1991, 1, 117-124.	0.4	39
164	Climate Change and Tourism in Tuscany, Italy: What If Heat Becomes Unbearable?. SSRN Electronic Journal, 0, , .	0.4	2