Ping Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6687187/publications.pdf

Version: 2024-02-01

		516710	501196
56	921	16	28
papers	citations	h-index	g-index
57	57	57	360
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Investigation in CaO–SiO ₂ –CaF ₂ –C slags during the sintering and melting process. Ironmaking and Steelmaking, 2022, 49, 199-207.	2.1	4
2	The role of carbonaceous materials in mold powder and influence on melting behavior. Journal of Thermal Analysis and Calorimetry, 2022, 147, 10965-10975.	3.6	4
3	Fluid Flow and Heat Transfer Behaviors under Non-Isothermal Conditions in a Four-Strand Tundish. Metals, 2022, 12, 840.	2.3	4
4	A Novel Method for Evaluating the Combustion Characteristics of Carbon Materials and Mold Fluxes. Steel Research International, 2021, 92, 2000416.	1.8	5
5	Characterization of Solidification Structure Morphology in High-Carbon Steel Billet by Fractal Dimension. Minerals, Metals and Materials Series, 2021, , 69-79.	0.4	O
6	Modification for prediction model of austenite grain size at surface of microalloyed steel slabs based on in situ observation. Journal of Iron and Steel Research International, 2021, 28, 1133-1140.	2.8	6
7	Qualitative, Quantitative and Mechanism Research of Volatiles in the Most Commonly Used CaO–SiO2–CaF2–Na2Ο Slag During Casting Process. Transactions of the Indian Institute of Metals, 2021, 74, 775-782.	1.5	10
8	Strength and Bonding Mechanism of Nonhydraulic Cementitious Binders: Reutilization of MgO in Basic Oxygen Furnace Dust. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 1322-1332.	2.1	0
9	A Comprehensive Investigation on the Microstructure and Thermal Conductivity of CaO-Al2O3 Based Mold Slags: Equilibrium Molecular Dynamics Simulations. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 1574-1581.	2.1	15
10	Optimization on Temperature Strategy of BOF Vanadium Extraction to Enhance Vanadium Yield with Minimum Carbon Loss. Metals, 2021, 11, 906.	2.3	3
11	Analysis of Crack Susceptibility of Peritectic Steels Based on Surface Roughness. Steel Research International, 2020, 91, 1900376.	1.8	9
12	Study on Binder of Cold-Bonded Pellets Containing Basic Oxygen Furnace Dust Based on Hydration Mechanism of Magnesium Potassium Phosphate Cementitious Material. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 2400-2412.	2.1	3
13	Effect of Shear Stress on Viscosity and Crystallization Behavior of CaO-SiO ₂ -Al ₂ O ₃ Based Mold Fluxes. Key Engineering Materials, 2020, 847, 87-92.	0.4	0
14	Effect of Al2O3 on non-Newtonian property and its relation to structure of mold fluxes during shear stress field at 1573ÂK. Journal of Non-Crystalline Solids, 2020, 547, 120312.	3.1	7
15	Structure Evolution and Crystallization Behavior of CaO–SiO2-Based Slags with Varying Carbon. Transactions of the Indian Institute of Metals, 2020, 73, 2785-2794.	1.5	2
16	Effects of temperature on the thermal conductivity of amorphous CaO–SiO ₂ –Al ₂ O ₃ slags: a computational insight. Physical Chemistry Chemical Physics, 2020, 22, 8808-8816.	2.8	7
17	Computational Insight into the Thermal Conductivity of CaO-SiO2-Al2O3-MgO-Na2O Melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 2391-2399.	2.1	6
18	Hydration and Crystallization Behavior of MgO in Cold-Bonded Pellets Containing Basic Oxygen Furnace Dust. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1016-1026.	2.1	2

#	Article	IF	Citations
19	An Application of Fractal Theory to Complex Macrostructure: Quantitatively Characterization of Segregation Morphology. ISIJ International, 2020, 60, 1188-1195.	1.4	6
20	Investigation on Thermal Conductivity and Solidification Process of Molten Slags by Using Copper Finger Dip Test. Transactions of the Indian Institute of Metals, 2019, 72, 3139-3151.	1.5	0
21	Effect of F ^{â^'} Replacing O ^{2â^'} on Crystallization Behavior of CaOâ€"SiO ₂ â€"Al ₂ O ₃ Continuous Casting Mold Flux. ISIJ International, 2019, 59, 367-374.	1.4	11
22	Morphology characteristics of solidification structure in high-carbon steel billet based on fractal theory. Journal of Materials Science, 2019, 54, 12851-12862.	3.7	12
23	Effect of Bubbles on Crystallization Behavior of CaO–SiO2 Based Slags. Metals, 2019, 9, 193.	2.3	6
24	Study of the Effect of Carbon on the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness. Metals, 2018, 8, 982.	2.3	7
25	Investigation of the End-Point Temperature Control Based on the Critical Temperature of Vanadium Oxidation During the Vanadium Extraction Process in BOF. Transactions of the Indian Institute of Metals, 2018, 71, 1957-1961.	1.5	2
26	A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness. Materials, 2018, 11, 571.	2.9	14
27	Effect of Shear Stress on Isothermal Crystallization Behavior of CaO-Al2O3-SiO2-Na2O-CaF2 Slags. Materials, 2018, 11, 1085.	2.9	10
28	Evolution of Temperature and Solid Slag Film During Solidification of Mold Fluxes. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 1292-1307.	2.1	11
29	In situ observation and numerical simulation of bubble behavior in CaO-SiO2 based slag during isothermal and nonisothermal processes. Journal of Non-Crystalline Solids, 2017, 464, 56-72.	3.1	8
30	A multivariate linear regression method based on an improved rate equation to determine parameters of nonisothermal crystallization kinetics. Thermochimica Acta, 2017, 656, 1-9.	2.7	9
31	Study of Ferrite During Refinement of Prior Austenite Grains in Microalloyed Steel Continuous Casting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 3074-3082.	2.1	9
32	A Model Estimating the Slab Corner Transverse Cracking Susceptibility of Microalloyed Steel Based on Microstructure. Materials Transactions, 2016, 57, 20-24.	1.2	2
33	Quantification of crystalline fraction of solid slag film using X-ray powder diffraction. Powder Diffraction, 2016, 31, 40-51.	0.2	5
34	Effect of slag-steel reaction on the structure and viscosity of CaO-SiO2-based mold flux during high-Al steel casting. Journal of Non-Crystalline Solids, 2016, 452, 119-124.	3.1	45
35	Effect of γâ†'α Phase Transformation on Refining Austenite Grains of Microalloyed Steel in Continuous Casting by Simulation. High Temperature Materials and Processes, 2016, 35, 653-659.	1.4	3
36	Effect of Al Speciation on the Structure of Highâ€Al Steels Mold Fluxes Containing Fluoride. Journal of the American Ceramic Society, 2016, 99, 3941-3947.	3.8	47

#	Article	lF	CITATIONS
37	Nonâ€Isothermal Crystallization Kinetics of Mold Fluxes Containing Li ₂ 0 for High Aluminum Steel Casting. Steel Research International, 2016, 87, 880-889.	1.8	15
38	Effects of the composition on the structure and viscosity of the CaO–SiO2-based mold flux. Journal of Non-Crystalline Solids, 2016, 435, 33-39.	3.1	50
39	The Influence of Na2O on the Solidification and Crystallization Behavior of CaO-SiO2-Al2O3-Based Mold Flux. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 1850-1859.	2.1	35
40	Development and Evaluation of CaO–SiO ₂ Based Mould Fluxes for Casting High Aluminum TRIP Steel. Steel Research International, 2015, 86, 110-120.	1.8	19
41	Effect of Al2O3 on the fluoride volatilization during melting and ion release in water of mold flux. Journal of Non-Crystalline Solids, 2015, 409, 8-13.	3.1	18
42	Effect of Slab Subsurface Microstructure Evolution on Transverse Cracking of Microalloyed Steel during Continuous Casting. Journal of Iron and Steel Research International, 2014, 21, 737-744.	2.8	6
43	Periodicity of Carbon Element Distribution Along Casting Direction in Continuous-Casting Billet by Using Singular Spectrum Analysis. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 1817-1826.	2.1	15
44	Fluid Flow and Inclusion Motion in a Multi-Heat Teeming Tundish for Heavy Steel Ingot. Journal of Iron and Steel Research International, 2012, 19, 19-26.	2.8	7
45	Simulation and Characterization on Heat Transfer through Mould Slag Film. ISIJ International, 2012, 52, 1179-1185.	1.4	22
46	Improvement of tundish shape and optimization of flow control devices for sequence casting heavy steel ingots. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 15-20.	4.9	7
47	Behavior of Mold Slag Used for 20Mn23Al Nonmagnetic Steel During Casting. Journal of Iron and Steel Research International, 2011, 18, 20-25.	2.8	42
48	Effect of Cooling Rate on the Precipitation Behavior of Carbonitride in Microalloyed Steel Slab. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2011, 42, 81-86.	2.1	27
49	Influence of Raw Material Type on Heat Transfer and Structure of Mould Slag. ISIJ International, 2011, 51, 1028-1032.	1.4	19
50	Characteristics of heat flux through slag film of mold slag used for high Al-TRIP steel casting. Journal of Iron and Steel Research International, 2010, 17, 11-16.	2.8	14
51	Viscosity and Viscosity Estimate Model of Fluoride-Free and Titanium-Bearing Mold Fluxes. Journal of Iron and Steel Research International, 2010, 17, 6-10.	2.8	27
52	Crystallization Behaviors of Mold Fluxes Containing Li ₂ O Using Single Hot Thermocouple Technique. ISIJ International, 2009, 49, 843-850.	1.4	38
53	Heat flux through slag film and its crystallization behavior. Journal of Iron and Steel Research International, 2008, 15, 7-11.	2.8	18
54	CCT and TTT diagrams to characterize crystallization behavior of mold fluxes. Journal of Iron and Steel Research International, 2008, 15, 32-37.	2.8	30

PING TANG

#	Article	IF	CITATIONS
55	The Influence of Al ₂ 0 ₃ /SiO ₂ Ratio on the Viscosity of Mold Fluxes. ISIJ International, 2008, 48, 739-746.	1.4	83
56	Development of Fluoride-free Mold Powders for Peritectic Steel Slab Casting. ISIJ International, 2007, 47, 1117-1125.	1.4	131