
Hiroyuki Minamikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/668698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chemical Reviews, 2005, 105, 1401-1444.	47.7	1,398
2	Supramolecular organic nanotubes: how to utilize the inner nanospace and the outer space. Soft Matter, 2011, 7, 4539.	2.7	128
3	Asymmetric Hydrocyanation of Aldehydes Using Chiral Titanium Reagents. Bulletin of the Chemical Society of Japan, 1988, 61, 4379-4383.	3.2	117
4	Functionalizable Organic Nanochannels Based on Lipid Nanotubes:  Encapsulation and Nanofluidic Behavior of Biomacromolecules. Chemistry of Materials, 2007, 19, 3553-3560.	6.7	110
5	Aqueous-Phase Behavior of Natural Glycolipid Biosurfactant Mannosylerythritol Lipid A:Â Sponge, Cubic, and Lamellar Phases. Langmuir, 2007, 23, 1659-1663.	3.5	108
6	Morphological Control of Helical Solid Bilayers in High-Axial-Ratio Nanostructures Through Binary Self-Assembly. Chemistry - A European Journal, 2002, 8, 5494-5500.	3.3	106
7	Self-assembly of synthetic glycolipid/water systems. Advances in Colloid and Interface Science, 1999, 80, 233-270.	14.7	105
8	Molecular Structure of Glucopyranosylamide Lipid and Nanotube Morphology. Langmuir, 2005, 21, 743-750.	3.5	93
9	Directed assembly of optoelectronically active alkyl–ĩ€-conjugated molecules by adding n-alkanes or ĩ€-conjugated species. Nature Chemistry, 2014, 6, 690-696.	13.6	92
10	Local and Network Structure of Thermoreversible Polyrotaxane Hydrogels Based on Poly(ethylene) Tj ETQq0 0 0 i	rgBT /Over 2.6	lock 10 Tf 50
11	Self-Assembly and Thermal Phase Transition Behavior of Unsymmetrical Bolaamphiphiles Having Glucose- and Amino-Hydrophilic Headgroups. Langmuir, 2007, 23, 4634-4641.	3.5	88
12	<i>Nature-like</i> synthetic alkyl branched-chain glycolipids: a review on chemical structure and self-assembly properties. Liquid Crystals, 2012, 39, 1-17.	2.2	87
13	Self-organized nanotube materials and their application in bioengineering. Polymer Journal, 2014, 46, 831-858.	2.7	80
14	Selective Construction of Supramolecular Nanotube Hosts with Cationic Inner Surfaces. Advanced Materials, 2005, 17, 2732-2736.	21.0	79
15	Amphiphilic designer nano-carriers for controlled release: from drug delivery to diagnostics. MedChemComm, 2014, 5, 1602-1618.	3.4	74
16	The Asymmetric Hydrocyanation of Aldehydes with Cyanotrimethylsilane Promoted by a Chiral Titanium Reagent. Chemistry Letters, 1987, 16, 2073-2076.	1.3	64

17	Controllable biomolecule release from self-assembled organic nanotubes with asymmetric surfaces: pH and temperature dependence. Soft Matter, 2008, 4, 1681.	2.7	63	
18	Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained	2.6	61	

Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1421, 91-102.

Ηιγογικι Μιναμικαψα

#	Article	IF	CITATIONS
19	Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids and Surfaces B: Biointerfaces, 2008, 65, 106-112.	5.0	60
20	The Effects of Oligosaccharide Stereochemistry on the Physical Properties of Aqueous Synthetic Glycolipids. Langmuir, 1996, 12, 1658-1665.	3.5	58
21	Confinement Effect of Organic Nanotubes Toward Green Fluorescent Protein (GFP) Depending on the Inner Diameter Size. Chemistry - A European Journal, 2010, 16, 4217-4223.	3.3	56
22	Phase Behavior of Synthetic Phytanyl-Chained Glycolipid/Water Systems. Langmuir, 1997, 13, 2564-2571.	3.5	54
23	Phase Transition in Glycolipid Monolayers Induced by Attractions between Oligosaccharide Head Groups. Langmuir, 1996, 12, 1666-1674.	3.5	50
24	Synthesis of 1,3-di-O-alkyl-2-O-(β-glycosyl)glycerols bearing oligosaccharides as hydrophilic groups. Chemistry and Physics of Lipids, 1994, 72, 111-118.	3.2	48
25	Reverse Micellar Cubic Phase in a Phytanyl-Chained Glucolipid/Water System. Langmuir, 1998, 14, 4503-4509.	3.5	48
26	Growth Process and Molecular Packing of a Self-assembled Lipid Nanotube:  Phase-Contrast Transmission Electron Microscopy and XRD Analyses. Langmuir, 2008, 24, 709-713.	3.5	47
27	Hydration and Molecular Motions in Synthetic Phytanyl-Chained Glycolipid Vesicle Membranes. Biophysical Journal, 2001, 81, 3377-3386.	0.5	45
28	Photoresponsive Soft Nanotubes for Controlled Guest Release. Chemistry - A European Journal, 2011, 17, 5251-5255.	3.3	45
29	Regio- and stereocontrolled synthesis of d-erythro-sphingosine and phytosphingosine from d-glucosamine. Tetrahedron Letters, 1994, 35, 745-748.	1.4	42
30	Alkylglycosides with an Isoprenoid-Type Hydrophobic Chain Can Afford Greater Control of Aqueous Phase Structures at Low Temperatures. Langmuir, 2002, 18, 3425-3429.	3.5	42
31	Phase behavior of ternary mannosylerythritol lipid/water/oil systems. Colloids and Surfaces B: Biointerfaces, 2009, 68, 207-212.	5.0	37
32	Interglycolipid Membrane Interactions: pH-Dependent Aggregation of Nonionic Synthetic Glycolipid Vesicles. Journal of Colloid and Interface Science, 2000, 223, 235-243.	9.4	36
33	Molecular Monolayer Nanotubes Having 7–9 nm Inner Diameters Covered with Different Inner and Outer Surfaces. Chemistry Letters, 2007, 36, 896-897.	1.3	35
34	Lipid Nanotube Tailored Fabrication of Uniquely Shaped Polydopamine Nanofibers as Photothermal Converters. Chemistry - A European Journal, 2016, 22, 4345-4350.	3.3	34
35	Enzymatic Conversion of Diacetylated Sophoroselipid into Acetylated Glucoselipid: Surface-Active Properties of Novel Bolaform Biosurfactants. Journal of Oleo Science, 2010, 59, 495-501.	1.4	33
36	FT-IR Study of the Interlamellar Water Confined in Glycolipid Nanotube Walls. Langmuir, 2005, 21, 4610-4614.	3.5	32

Ηιγογικι Μιναμικαψα

#	Article	IF	CITATIONS
37	Hybrid Organic Nanotubes with Dual Functionalities Localized on Cylindrical Nanochannels Control the Release of Doxorubicin. Advanced Healthcare Materials, 2012, 1, 699-706.	7.6	30
38	Internal constraints and arrested relaxation in main-chain nematic elastomers. Nature Communications, 2021, 12, 787.	12.8	30
39	Cisplatin-encapsulated organic nanotubes by endo-complexation in the hollow cylinder. Chemical Communications, 2012, 48, 8625.	4.1	29
40	A reevaluation of the epimeric and anomeric relationship of glucosides and galactosides in thermotropic liquid crystal self-assemblies. Carbohydrate Research, 2011, 346, 2948-2956.	2.3	27
41	Functionalized organic nanotubes as tubular nonviral gene transfer vector. Journal of Controlled Release, 2011, 156, 70-75.	9.9	26
42	Headgroup effects on phase behavior and interfacial properties of β-3,7-dimethyloctylglycoside/water systems. Chemistry and Physics of Lipids, 2005, 134, 151-160.	3.2	25
43	Alkylglucosides with isoprenoid-type hydrophobic chains-effects of hydrophobic chain size on the aqueous phase behavior. Chemistry and Physics of Lipids, 2004, 127, 65-75.	3.2	24
44	Monolayers of ω-Hydroxyalkyldimethyloctadecylammonium Bromide at Water-Air Interface. Journal of Colloid and Interface Science, 1993, 161, 155-162.	9.4	23
45	Aligned Nanocables: Controlled Sheathing of CuO Nanowires by a Selfâ€Assembled Tubular Glycolipid. Advanced Materials, 2007, 19, 4194-4197.	21.0	23
46	Synthetic Phytanyl-Chained Glycolipid Vesicle Membrane as a Novel Matrix for Functional Reconstitution of Cyanobacterial Photosystem II Complex. Biochemical and Biophysical Research Communications, 1999, 265, 734-738.	2.1	22
47	Diverse Morphologies of Selfâ€Assemblies from Homoditopic 1,18â€Nucleotideâ€Appended Bolaamphiphiles: Effects of Nucleobases and Complementary Oligonucleotides. Small, 2010, 6, 1131-1139.	10.0	22
48	Effect of Inorganic Salts on the Phase Behavior of an Aqueous Mixture of Heptaethylene Glycol Dodecyl Ether. Langmuir, 2003, 19, 10487-10494.	3.5	20
49	Preliminary communication Liquid crystalline cardanyl β-D-glucopyranosides. Liquid Crystals, 2003, 30, 747-749.	2.2	20
50	Dimension Control of Glycolipid Nanotubes by Successive Use of Vesicle Extrusion and Porous Template. Chemistry of Materials, 2006, 18, 1577-1580.	6.7	20
51	Effects of PEGylation on the physicochemical properties and in vivo distribution of organic nanotubes. International Journal of Nanomedicine, 2014, 9, 5811.	6.7	20
52	A hydro/organo/hybrid gelator: A peptide lipid with turning aspartame head groups. Journal of Colloid and Interface Science, 2013, 395, 154-160.	9.4	19
53	Dynamic lightâ€scattering measurement of sieving polymer solutions for protein separation on SDS CE. Electrophoresis, 2009, 30, 3607-3612.	2.4	18
54	Solvent-chirality selective organogelation by chiral aspartame lipids. Soft Matter, 2012, 8, 11979.	2.7	18

#	Article	IF	CITATIONS
55	Formation of Self-Assembled Glycolipid Nanotubes with Bilayer Sheets. Journal of Nanoscience and Nanotechnology, 2007, 7, 960-964.	0.9	17
56	Stereochemistry-Dependent Self-Assembly in Synthetic Glycolipid/Water Systems:Â The Aqueous Phase Structure of 1,3-Di-O-dodecyl-2-(β-maltoheptaosyl)glycerol. Journal of Physical Chemistry B, 1998, 102, 11035-11042.	2.6	16
57	Effect of alkoxy terminal chain length on mesomorphism of 1,6-disubstituted pyrene-based hexacatenar liquid crystals: columnar phase control. Tetrahedron, 2014, 70, 5100-5108.	1.9	16
58	Aqueous Gel Formation from Sodium Salts of Cellobiose Lipids. Journal of Oleo Science, 2014, 63, 1005-1010.	1.4	16
59	Forces that Control pH-Dependent Aggregation of Nonionic Glycolipid Vesicles. Langmuir, 2001, 17, 1853-1859.	3.5	15
60	Spontaneous Nematic Alignment of a Lipid Nanotube in Aqueous Solutions. Langmuir, 2015, 31, 1150-1154.	3.5	14
61	pH and salt-induced reversible aggregation of nonionic synthetic glycolipid vesicles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 207, 215-221.	4.7	13
62	Elastic precursor of the transformation from glycolipid nanotube to vesicle. Journal of Physics Condensed Matter, 2006, 18, 3089-3096.	1.8	13
63	Supramolecular nanofiber formation from commercially available arginine and a bola-type diacetylenic diacid via hydrogelation. Polymer Journal, 2012, 44, 646-650.	2.7	13
64	Unlocking Entropic Elasticity of Nematic Elastomers Through Light and Dynamic Adhesion. Advanced Materials Interfaces, 2021, 8, 2100672.	3.7	13
65	Quantitative analyses of PEGylated phospholipids adsorbed on single walled carbon nanohorns by high resolution magic angle spinning 1H NMR. Carbon, 2016, 101, 213-217.	10.3	12
66	Impact of Crystallites in Nematic Elastomers on Dynamic Mechanical Properties and Adhesion. Macromolecules, 2021, 54, 8987-8995.	4.8	12
67	Small angle X-ray scattering from lamellar phase for β-3,7-dimethyloctylglucoside/water system: comparison with β-n-alkylglucosides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 250, 485-490.	4.7	11
68	Synthetic peptidic amphiphile: reduction in length of a helical bilayer assembly due to interaction with a metal cation. Journal of the Chemical Society Chemical Communications, 1990, , 183.	2.0	10
69	Enhanced Circular Dichroism of Self-Assembled Peptidic Amphiphiles. Chemistry Letters, 1989, 18, 1341-1344.	1.3	9
70	Preparation and Formation Process of Zn(II)-Coordinated Nanovesicles. Langmuir, 2017, 33, 14130-14138.	3.5	9
71	Selfâ€Assembling Properties and Recovery Effects on Damaged Skin Cells of Chemically Synthesized Mannosylerythritol Lipids. ChemBioChem, 2022, 23, .	2.6	9
72	Trityl Salts Catalyzed Aldol-Type Reaction of Alkyl Enol Ethers with Acetals. Chemistry Letters, 1987, 16, 1051-1052.	1.3	8

#	Article	IF	CITATIONS
73	Well Defined Organic Surfaces Flat at the Molecular Level. Control of Surface Chemical Groups by Bipolar Surfactant Monolayers on Step-Free Mica Surfaces. Chemistry Letters, 1991, 20, 1049-1052.	1.3	8
74	Two Component Monolayers of ω-Hydroxyalkyldimethyloctadecylammonium Bromide and Arachidic Acid at Water-Air Interface. Journal of Colloid and Interface Science, 1993, 161, 163-168.	9.4	8
75	A Simple <i>N</i> -Acyl- <scp>l</scp> -amino Acid Constructed Metal-complexed Organic Nanotube Having an Inner Diameter below 10 nm. Chemistry Letters, 2011, 40, 218-220.	1.3	8
76	Development of massive synthesis method of organic nanotube toward practical use. Synthesiology, 2009, 1, 169-176.	0.2	7
77	Sodium chloride-induced self-assembly of microfibers from nanofiber components. Journal of Colloid and Interface Science, 2004, 277, 299-303.	9.4	6
78	Templated Assembly of a Monolayer Consisting of a Coordination Nanobox at Air–Water Interface. Chemistry Letters, 2004, 33, 860-861.	1.3	6
79	Photohardenable Pressure-Sensitive Adhesives using Poly(methyl methacrylate) containing Liquid Crystal Plasticizers. ACS Applied Materials & Interfaces, 2021, 13, 39949-39956.	8.0	5
80	A convenient synthesis of galactocerebroside using D-glucosamine as a chiral source of the ceramide moiety. Journal of the Chemical Society Perkin Transactions 1, 1992, , 1875.	0.9	4
81	Buffers to suppress sodium dodecyl sulfate adsorption to polyethylene oxide for protein separation on capillary polymer electrophoresis. Electrophoresis, 2011, 32, 448-454.	2.4	4
82	Synthesis and Liquid Crystals Properties of $\hat{I}\pm$ -Methylated Galactosides. Physics Procedia, 2011, 14, 91-95.	1.2	4
83	Actuation Properties of Paper Actuators Fabricated Using PEDOT/PSS Electrode Films. Journal of Oleo Science, 2020, 69, 1331-1337.	1.4	4
84	Stabilized director buckling patterns in nematic elastomers and their dynamic optical effects. Communications Materials, 2022, 3, .	6.9	4
85	Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. ChemInform, 2005, 36, no.	0.0	3
86	Mixed monolayer of dipalmitoylphosphatidylcholine and stage-specific embryonic antigen-1 (SSEA-1). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332, 139-143.	4.7	3
87	Gel–Flocculation Transition of a Supramolecular Hydrogel Induced by Depletion Effect of Polymers. Chemistry Letters, 2009, 38, 606-607.	1.3	3
88	Design of synthetic glycolipids for membrane biotechnology. Studies in Surface Science and Catalysis, 2001, , 725-728.	1.5	2
89	Organic Nanotube with Subnanometer Inner Diameter Self-assembled from Carboxybetaine Bipolar Amphiphile and Its Stabilization Effect toward Small Molecules. Chemistry Letters, 2016, 45, 1180-1182.	1.3	2

90 Phase behavior of phytanyl-chained akylglycoside/water systems. , 0, , 56-60.

Hiroyuki Minamikawa

#	Article	IF	CITATIONS
91	Sugar-Based Surfactants with Isoprenoid-Type Hydrophobic Chains. Surfactant Science, 2008, , .	0.0	2
92	Langmuir-Blodgett films of diastereomeric tartaric acid derivatives Journal of Fiber Science and Technology, 1990, 46, 409-411.	0.0	2
93	Self-assembly and amphiphilic behavior of poly(ester)-block-poly(amide) diblock copolymer based on biodegradable poly(butylene succinate) and poly(2-pyrrolidone). European Polymer Journal, 2022, 163, 110961.	5.4	2
94	Polymorphism of Model Glycosphingolipids Evidenced by Calorimetric and Polarizing Microscopic Study. Chemistry Letters, 1993, 22, 567-570.	1.3	1
95	Aggregation Behavior of Nonionic Clycolipid Vesicles in Acidic Region. Journal of Dispersion Science and Technology, 2000, 21, 907-913.	2.4	1
96	Polyamide monomolecular films prepared by polycondensation at air-water interface. Polymer, 1994, 35, 1103-1104.	3.8	0
97	Micelle structures in aqueous solutions of glucose-based surfactants having an isoprenoid-type hydrophobic chain. Journal of Colloid and Interface Science, 2007, 312, 122-129.	9.4	0
98	Effects of Fiber Stiffening to a Soft Actuator with PEDOT/PSS Electrode Films on Actuation Cycling Stability. Journal of Oleo Science, 2021, 70, 861-866.	1.4	0