List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6686720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell, 2017, 171, 217-228.e13.	28.9	692
2	Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 338-351.	17.8	292
3	Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science, 2015, 349, 873-876.	12.6	243
4	Zinc activates damage-sensing TRPA1 ion channels. Nature Chemical Biology, 2009, 5, 183-190.	8.0	204
5	Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nature Neuroscience, 2007, 10, 568-577.	14.8	202
6	Pore region of TRPV3 ion channel is specifically required for heat activation. Nature Neuroscience, 2008, 11, 1007-1013.	14.8	161
7	Piezo2 channel–Merkel cell signaling modulates the conversion of touch to itch. Science, 2018, 360, 530-533.	12.6	144
8	A basophil-neuronal axis promotes itch. Cell, 2021, 184, 422-440.e17.	28.9	130
9	Zika Virus Targets Glioblastoma Stem Cells through a SOX2-Integrin αvβ5 Axis. Cell Stem Cell, 2020, 26, 187-204.e10.	11.1	126
10	Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Archiv European Journal of Physiology, 2010, 459, 579-592.	2.8	110
11	Sensory TRP channels contribute differentially to skin inflammation and persistent itch. Nature Communications, 2017, 8, 980.	12.8	106
12	Two amino acid residues determine 2-APB sensitivity of the ion channels TRPV3 and TRPV4. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1626-1631.	7.1	103
13	Transient receptor potential vanilloid 4–expressing macrophages and keratinocytes contribute differentially to allergic and nonallergic chronic itch. Journal of Allergy and Clinical Immunology, 2018, 141, 608-619.e7.	2.9	85
14	Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity, 2021, 54, 2072-2088.e7.	14.3	76
15	Molecular and cellular mechanisms that initiate pain and itch. Cellular and Molecular Life Sciences, 2015, 72, 3201-3223.	5.4	74
16	Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle. Journal of Neuroscience, 2018, 38, 5507-5522.	3.6	68
17	TRPV1 activity and substance P release are required for corneal cold nociception. Nature Communications, 2019, 10, 5678.	12.8	64
18	TRPV4 Channel Signaling in Macrophages Promotes Gastrointestinal Motility via Direct Effects on Smooth Muscle Cells. Immunity, 2018, 49, 107-119.e4.	14.3	63

#	Article	IF	CITATIONS
19	TRP Channels as Drug Targets to Relieve Itch. Pharmaceuticals, 2018, 11, 100.	3.8	62
20	Optogenetic Induction of Colonic Motility in Mice. Gastroenterology, 2018, 155, 514-528.e6.	1.3	62
21	Sustained Elevated Adenosine via ADORA2B Promotes Chronic Pain through Neuro-immune Interaction. Cell Reports, 2016, 16, 106-119.	6.4	61
22	Retinoids activate the irritant receptor TRPV1 and produce sensory hypersensitivity. Journal of Clinical Investigation, 2013, 123, 3941-3951.	8.2	57
23	Zinc Inhibits TRPV1 to Alleviate Chemotherapy-Induced Neuropathic Pain. Journal of Neuroscience, 2018, 38, 474-483.	3.6	51
24	Gating of human TRPV3 in a lipid bilayer. Nature Structural and Molecular Biology, 2020, 27, 635-644.	8.2	46
25	Thermally Activated TRPV3 Channels. Current Topics in Membranes, 2014, 74, 325-364.	0.9	45
26	IL-33 signaling in sensory neurons promotes dry skin itch. Journal of Allergy and Clinical Immunology, 2022, 149, 1473-1480.e6.	2.9	44
27	Scaffolding by A-Kinase Anchoring Protein Enhances Functional Coupling between Adenylyl Cyclase and TRPV1 Channel. Journal of Biological Chemistry, 2013, 288, 3929-3937.	3.4	43
28	Tonic Inhibition of TRPV3 by Mg2+ in Mouse Epidermal Keratinocytes. Journal of Investigative Dermatology, 2012, 132, 2158-2165.	0.7	37
29	Polymodal TRPV1 and TRPV4 Sensors Colocalize but Do Not Functionally Interact in a Subpopulation of Mouse Retinal Ganglion Cells. Frontiers in Cellular Neuroscience, 2018, 12, 353.	3.7	37
30	Mechanosensitive TRPV4 is required for crystal-induced inflammation. Annals of the Rheumatic Diseases, 2021, 80, 1604-1614.	0.9	36
31	Cryo-EM structure of a proton-activated chloride channel TMEM206. Science Advances, 2021, 7, .	10.3	27
32	Eact, a small molecule activator of TMEM16A, activates TRPV1 and elicits pain―and itchâ€related behaviours. British Journal of Pharmacology, 2016, 173, 1208-1218.	5.4	26
33	Identification and characterization of two ankyrin-B isoforms in mammalian heart. Cardiovascular Research, 2015, 107, 466-477.	3.8	23
34	Differential expression of canonical (classical) transient receptor potential channels in guinea pig enteric nervous system. Journal of Comparative Neurology, 2008, 511, 847-862.	1.6	22
35	Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon. American Journal of Physiology - Renal Physiology, 2018, 314, G53-G64.	3.4	20
36	Parathyroid Hormone-Related Peptide Elicits Peripheral TRPV1-dependent Mechanical Hypersensitivity. Frontiers in Cellular Neuroscience, 2018, 12, 38.	3.7	20

#	Article	IF	CITATIONS
37	Cell-based Calcium Assay for Medium to High Throughput Screening of TRP Channel Functions using FlexStation 3. Journal of Visualized Experiments, 2011, , .	0.3	19
38	Targeting Pain-evoking Transient Receptor Potential Channels for the Treatment of Pain. Current Neuropharmacology, 2013, 11, 652-663.	2.9	17
39	Potentiation of High Voltage–Activated Calcium Channels by 4-Aminopyridine Depends on Subunit Composition. Molecular Pharmacology, 2014, 86, 760-772.	2.3	16
40	Activation of TRPV4 Regulates Respiration through Indirect Activation of Bronchopulmonary Sensory Neurons. Frontiers in Physiology, 2016, 7, 65.	2.8	16
41	Versatile cell ablation tools and their applications to study loss of cell functions. Cellular and Molecular Life Sciences, 2019, 76, 4725-4743.	5.4	16
42	Kir6.1- and SUR2-dependent KATP overactivity disrupts intestinal motility in murine models of Cantú syndrome. JCI Insight, 2020, 5, .	5.0	16
43	Kv Channel S1-S2 Linker Working as a Binding Site of Human β-Defensin 2 for Channel Activation Modulation. Journal of Biological Chemistry, 2015, 290, 15487-15495.	3.4	15
44	A novel player in the field: Merkel disc in touch, itch and pain. Experimental Dermatology, 2019, 28, 1412-1415.	2.9	15
45	Inhalation anaesthetic isoflurane inhibits the muscarinic cation current and carbachol-induced gastrointestinal smooth muscle contractions. European Journal of Pharmacology, 2018, 820, 39-44.	3.5	15
46	Goblet cell LRRC26 regulates BK channel activation and protects against colitis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
47	Anti-inflammatory dopamine- and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and the TRPV1 channel. Nature Communications, 2021, 12, 926.	12.8	14
48	The Pore Loop Domain of TRPV1 Is Required for Its Activation by the Volatile Anesthetics Chloroform and Isoflurane. Molecular Pharmacology, 2015, 88, 131-138.	2.3	13
49	The antimicrobial peptide human beta-defensin 2 promotes itch through Toll-like receptor 4 signaling in mice. Journal of Allergy and Clinical Immunology, 2017, 140, 885-888.e6.	2.9	13
50	Miswiring of Merkel cell and pruriceptive C fiber drives the itch-scratch cycle. Science Translational Medicine, 2022, 14, .	12.4	13
51	Loureirin B, an essential component of Sanguis Draxonis, inhibits Kv1.3 channel and suppresses cytokine release from Jurkat T cells. Cell and Bioscience, 2014, 4, 78.	4.8	11
52	Enteric Nervous System Structure and Neurochemistry Related to Function and Neuropathology. , 2018, , 337-360.		11
53	Diversity of neurogenic smooth muscle electrical rhythmicity in mouse proximal colon. American Journal of Physiology - Renal Physiology, 2020, 318, G244-G253.	3.4	11
54	<scp>LE135</scp> , a retinoid acid receptor antagonist, produces pain through direct activation of <scp>TRP</scp> channels. British Journal of Pharmacology, 2014, 171, 1510-1520.	5.4	10

#	Article	IF	CITATIONS
55	Loureirin B Exerts its Immunosuppressive Effects by Inhibiting STIM1/Orai1 and KV1.3 Channels. Frontiers in Pharmacology, 2021, 12, 685092.	3.5	9
56	Notch signaling in bone marrow–derived FSP-1Âcells initiates neointima formation in arteriovenousĂfistulas. Kidney International, 2019, 95, 1347-1358.	5.2	8
57	Optogenetic control of the enteric nervous system and gastrointestinal transit. Expert Review of Gastroenterology and Hepatology, 2019, 13, 281-284.	3.0	7
58	Transmembrane protein TMEM184B is necessary for interleukin-31–induced itch. Pain, 2022, 163, e642-e653.	4.2	7
59	Long range synchronization within the enteric nervous system underlies propulsion along the large intestine in mice. Communications Biology, 2021, 4, 955.	4.4	7
60	CaMKII Is Essential for the Function of the Enteric Nervous System. PLoS ONE, 2012, 7, e44426.	2.5	7
61	Effects of optogenetic activation of the enteric nervous system on gastrointestinal motility in mouse small intestine. Autonomic Neuroscience: Basic and Clinical, 2020, 229, 102733.	2.8	6
62	Transient stimulation of TRPV4â€expressing keratinocytes promotes hair follicle regeneration in mice. British Journal of Pharmacology, 2020, 177, 4181-4192.	5.4	6
63	Modification of Neurogenic Colonic Motor Behaviours by Chemogenetic Ablation of Calretinin Neurons. Frontiers in Cellular Neuroscience, 2022, 16, 799717.	3.7	6
64	THE ROLE OF TRPV4 CATION CHANNELS IN THE REGULATION OF PHENYLEPHRINE-INDUCED CONTRACTION OF RAT PULMONARY ARTERY. Fiziologicheskii Zhurnal, 2016, 62, 79-86.	0.2	4
65	Estrogen metabolites increase nociceptor hyperactivity in a mouse model of uterine pain. JCI Insight, 2022, 7, .	5.0	4
66	Optogenetic Induction of Propagating Colonic Motor Complexes and Silencing of Colonic Motility Using Cre-Inducible Activation and Inactivation of Calretinin-Expressing Neurons. Gastroenterology, 2017, 152, S102.	1.3	2
67	Neuronal IL-4Rα and JAK1 signaling critically mediate atopic dermatitis-associated. Journal of Allergy and Clinical Immunology, 2018, 141, AB92.	2.9	2
68	Synthesis and Characterization of a Specific Iodineâ€125â€Labeled TRPC5 Radioligand. ChemMedChem, 2020, 15, 1854-1860.	3.2	2
69	Mechanisms of Broad-Band UVB Irradiation‒Induced Itch in Mice. Journal of Investigative Dermatology, 2021, 141, 2499-2508.e3.	0.7	2
70	A Basophil-Neuronal Axis Promotes Itch. SSRN Electronic Journal, 0, , .	0.4	1
71	Calcium Sensing Receptor in Rat Myenteric Plexus of Colon. Gastroenterology, 2011, 140, S-521.	1.3	0
72	Mo1693 Activation of Bone Marrow-Derived TRPV4-Expressing M2 Macrophages Promotes Intestinal Contraction. Gastroenterology, 2015, 148, S-687.	1.3	0

#	Article	IF	CITATIONS
73	Synthesis and in vitro evaluation of new TRPV4 ligands and biodistribution study of an 11C-labeled radiotracer in rodents. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127573.	2.2	0
74	Structural Basis of TRPV3 Activation and Inactivation. Biophysical Journal, 2020, 118, 412a.	0.5	0
75	KATP Activity in Intestinal Smooth Muscle Regulates Motility. Biophysical Journal, 2020, 118, 589a.	0.5	Ο
76	Cutaneous mechanisms of itch signaling. Itch (Philadelphia, Pa), 2021, 6, e50-e50.	0.2	0
77	Activation of TRPA1 channels by Fenamate NSAIDs. FASEB Journal, 2010, 24, 583.3.	0.5	Ο
78	Acid induces TRPV4â€mediated calcium influx in mouse esophageal keratinocytes. FASEB Journal, 2012, 26, 695.7.	0.5	0
79	TRPV4 Agonist GSK1016790A Regulates Respiration through Indirect Activation of Bronchopulmonary Sensory Neurons. FASEB Journal, 2015, 29, 860.2.	0.5	Ο
80	Sustained Elevation of Adenosine-ADORA2B Signaling Promotes Chronic Pain through Neuro-Immune Interaction in Sickle Cell Disease. Blood, 2015, 126, 974-974.	1.4	0
81	TRPV3 (Transient Receptor Potential Channel Subfamily V Member 3). , 2016, , 1-6.		Ο
82	The Role of TRPV4 Cation Channels in Regulation of Phenylephrine-Induced Contraction of Rat Pulmonary Artery. International Journal of Physiology and Pathophysiology, 2017, 8, 121-130.	0.1	0
83	TRPV3 (Transient Receptor Potential Channel Subfamily V Member 3). , 2018, , 5749-5755.		0
84	NPR1 inhibitors: new drugs for itch treatment?. Journal of Xiangya Medicine, 0, 4, 39-39.	0.2	0