Shanjun Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6686349/publications.pdf

Version: 2024-02-01

516215 414034 1,071 43 16 32 citations h-index g-index papers 43 43 43 1040 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A study on the modification of polypropylene by a star-shaped intumescent flame retardant containing phosphorus and nitrogen. Polymer Degradation and Stability, 2022, 195, 109801.	2.7	20
2	Preparation and Characterization of Non-N-Bonded Side-Chain Anion Exchange Membranes Based on Poly(2,6-dimethyl-1,4-phenylene oxide). Industrial & Engineering Chemistry Research, 2022, 61, 1715-1724.	1.8	12
3	Intumescent Flame-retardant Modification of Polypropylene/Carbon Fiber Composites. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 163-169.	0.4	2
4	Preparation and characterization of deacetylated konjac glucomannan / pectin composite films crosslinked with calcium hydroxide. Journal of Polymer Research, 2022, 29, .	1.2	3
5	Gelation of Konjac glucomannan crosslinked by organotitanium chelated with different ligands. Journal of Sol-Gel Science and Technology, 2021, 98, 401-410.	1.1	3
6	Crosslinked Proton Exchange Membranes with a Wider Working Temperature Based on Phosphonic Acid Functionalized Siloxane and PPO. Macromolecular Research, 2021, 29, 199-210.	1.0	11
7	Study on synthesis and demolding performance of polyethylene glycol fatty acid mold release agents. Polymers for Advanced Technologies, 2021, 32, 4061-4069.	1.6	5
8	Trimethyl-Ammonium Alkaline Anion Exchange Membranes with the Vinylbenzyl Chloride/Acrylonitrile Main Chain. Macromolecular Research, 2021, 29, 494-504.	1.0	5
9	Preparation Process Orthogonal Optimization and Mechanical Properties of Microcellular Foam Polypropylene. Macromolecular Materials and Engineering, 2021, 306, 2100350.	1.7	4
10	The flame retardant and thermal performances of polypropylene with a novel intumescent flame retardant. Journal of Applied Polymer Science, 2020, 137, 49047.	1.3	20
11	Pure, simple and green synthesis of magnesium oxysulphate whiskers through hydrothermal reaction. Micro and Nano Letters, 2019, 14, 245-248.	0.6	O
12	Novel imidazoleâ€grafted hybrid anion exchange membranes based on poly(2,6â€dimethylâ€1,4â€phenylene) T	j et <u>o</u> q0 0	0 rgBT /Overlo
13	Proton Exchange Membrane with Enlarged Operating Temperature by Incorporating Phosphonic Acid Functionalized and Crosslinked Siloxane in Sulfonated Poly(ether ether ketone) (SPEEK) Matrix. Macromolecular Research, 2018, 26, 173-181.	1.0	8
14	Preparation of cationic konjac glucomannan in NaOH/urea aqueous solution. Carbohydrate Polymers, 2018, 181, 736-743.	5.1	26
15	Preparation and characterization of proton exchange membrane based on polyphosphoric acid modified by <scp>PVDF</scp> â€ <scp>HFP</scp> . Journal of Applied Polymer Science, 2018, 135, 46737.	1.3	O
16	Reinforcing and toughening of polyurethane by chemically modified Konjac glucomannan nanocrystal. Polymer Composites, 2017, 38, 1447-1453.	2.3	3
17	Preparation and characterization of a foam regulator with ultraâ€high molecular weight. Journal of Applied Polymer Science, 2017, 134, .	1.3	O
18	Phosphonic acid functionalized siloxane crosslinked with 3â€glycidoxyproyltrimethoxysilane grafted polybenzimidazole high temperature proton exchange membranes. Journal of Applied Polymer Science, 2017, 134, .	1.3	15

#	Article	IF	CITATIONS
19	Acid-base high temperature proton exchange membranes prepared from phosphonic acid functionalized siloxane. Ionics, 2017, 23, 949-958.	1.2	2
20	Preparation and characterization of chitosan gel beads crosslinked by organic titanium. Journal of Polymer Research, 2015, 22, 1.	1.2	5
21	Preparation of inorganic–organic hybrid proton exchange membrane with chemically bound hydroxyethane diphosphonic acid. Journal of Applied Polymer Science, 2012, 126, 954-959.	1.3	13
22	Synthesis of cyanoethyl konjac glucomannan and its liquid crystalline behavior in an ionic liquid. Journal of Polymer Research, 2012, 19, 1.	1.2	10
23	Dissolution of konjac glucomannan with room temperature ionic liquids. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 703-709.	0.4	7
24	Konjac glucomannan nanocrystals prepared by acid hydrolysis. E-Polymers, 2010, 10, .	1.3	3
25	Molecular weight effects on gelation and rheological properties of konjac glucomannan–xanthan mixtures. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 313-321.	2.4	19
26	Rheological properties of konjac glucomannan/SiO2/organic-borate gels. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 575-580.	0.4	0
27	<i>In situ</i> pHâ€decreaseâ€induced gelation of sodium alginate/carboxymethylated konjac glucomannan. Journal of Applied Polymer Science, 2008, 108, 2825-2832.	1.3	8
28	Thermoreversible konjac glucomannan gel crosslinked by borax. Carbohydrate Polymers, 2008, 72, 315-325.	5.1	66
29	Gelation of konjac glucomannan crosslinked by organic borate. Carbohydrate Polymers, 2008, 73, 498-505.	5.1	21
30	Miscibility and properties of blend materials from waterborne polyurethane and carboxymethyl konjac glucomannan. Journal of Applied Polymer Science, 2004, 92, 77-83.	1.3	16
31	Effect of deacetylation rate on gelation kinetics of konjac glucomannan. Colloids and Surfaces B: Biointerfaces, 2004, 38, 241-249.	2.5	59
32	Effect of Degree of Acetylation on Gelation of Konjac Glucomannan. Biomacromolecules, 2004, 5, 175-185.	2.6	111
33	Synthesis and characterization of poly(ester urethane)/nitrokonjac glucomannan semi-interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 90, 2224-2228.	1.3	3
34	Effect of the synthesis route on the structure and properties of polyurethane/nitrokonjac glucomannan semi-interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 90, 1948-1954.	1.3	7
35	Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1521-1529.	2.4	274
36	Molecular Weight Effects on Properties of Polyurethane/Nitrokonjac Glucomannan Semiinterpenetrating Polymer Networks. Macromolecules, 2001, 34, 2202-2207.	2.2	66

Shanjun Gao

#	Article	IF	CITATION
37	Characterization of konjac glucomannan-gelatin blend films. Journal of Applied Polymer Science, 2001, 79, 1596-1602.	1.3	47
38	Semi-interpenetrating polymer networks from castor oil-based polyurethane and nitrokonjac glucomannan. Journal of Applied Polymer Science, 2001, 81, 2076-2083.	1.3	21
39	WATER-RESISTANT CELLULOSE FILMS COATED WITH POLYURETHANE-ACRYLAMIDE GRAFTED KONJAC GLUCOMANNAN. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 33-42.	1.2	9
40	CHARACTERIZATION OF POLY(VINYL ALCOHOL)-KONJAC GLUCOMANNAN BLEND FILMS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2000, 37, 1009-1021.	1.2	19
41	Blend films from chitosan and konjac glucomannan solutions. Journal of Applied Polymer Science, 2000, 76, 509-515.	1.3	96
42	Blend films from konjac glucomannan and sodium alginate solutions and their preservative effect. Journal of Applied Polymer Science, 2000, 77, 617-626.	1.3	42
43	PP/POE thermoplastic elastomer prepared by dynamic vulcanization and its flame retardant modification. Journal of Elastomers and Plastics, 0, , 009524432110290.	0.7	3