
Shanjun Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6686349/publications.pdf

Version: 2024-02-01

SHANILIN CAO

#	Article	IF	CITATIONS
1	Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1521-1529.	2.4	274
2	Effect of Degree of Acetylation on Gelation of Konjac Glucomannan. Biomacromolecules, 2004, 5, 175-185.	2.6	111
3	Blend films from chitosan and konjac glucomannan solutions. Journal of Applied Polymer Science, 2000, 76, 509-515.	1.3	96
4	Molecular Weight Effects on Properties of Polyurethane/Nitrokonjac Glucomannan Semiinterpenetrating Polymer Networks. Macromolecules, 2001, 34, 2202-2207.	2.2	66
5	Thermoreversible konjac glucomannan gel crosslinked by borax. Carbohydrate Polymers, 2008, 72, 315-325.	5.1	66
6	Effect of deacetylation rate on gelation kinetics of konjac glucomannan. Colloids and Surfaces B: Biointerfaces, 2004, 38, 241-249.	2.5	59
7	Characterization of konjac glucomannan-gelatin blend films. Journal of Applied Polymer Science, 2001, 79, 1596-1602.	1.3	47
8	Blend films from konjac glucomannan and sodium alginate solutions and their preservative effect. Journal of Applied Polymer Science, 2000, 77, 617-626.	1.3	42
9	Preparation of cationic konjac glucomannan in NaOH/urea aqueous solution. Carbohydrate Polymers, 2018, 181, 736-743.	5.1	26
10	Semi-interpenetrating polymer networks from castor oil-based polyurethane and nitrokonjac glucomannan. Journal of Applied Polymer Science, 2001, 81, 2076-2083.	1.3	21
11	Gelation of konjac glucomannan crosslinked by organic borate. Carbohydrate Polymers, 2008, 73, 498-505.	5.1	21
12	The flame retardant and thermal performances of polypropylene with a novel intumescent flame retardant. Journal of Applied Polymer Science, 2020, 137, 49047.	1.3	20
13	A study on the modification of polypropylene by a star-shaped intumescent flame retardant containing phosphorus and nitrogen. Polymer Degradation and Stability, 2022, 195, 109801.	2.7	20
14	CHARACTERIZATION OF POLY(VINYL ALCOHOL)-KONJAC GLUCOMANNAN BLEND FILMS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2000, 37, 1009-1021.	1.2	19
15	Molecular weight effects on gelation and rheological properties of konjac glucomannan–xanthan mixtures. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 313-321.	2.4	19
16	Miscibility and properties of blend materials from waterborne polyurethane and carboxymethyl konjac glucomannan. Journal of Applied Polymer Science, 2004, 92, 77-83.	1.3	16
17	Phosphonic acid functionalized siloxane crosslinked with 3â€glycidoxyproyltrimethoxysilane grafted polybenzimidazole high temperature proton exchange membranes. Journal of Applied Polymer Science, 2017, 134, .	1.3	15
18	Preparation of inorganic–organic hybrid proton exchange membrane with chemically bound hydroxyethane diphosphonic acid. Journal of Applied Polymer Science, 2012, 126, 954-959.	1.3	13

Shanjun Gao

#	Article	IF	CITATIONS
19	Preparation and Characterization of Non-N-Bonded Side-Chain Anion Exchange Membranes Based on Poly(2,6-dimethyl-1,4-phenylene oxide). Industrial & Engineering Chemistry Research, 2022, 61, 1715-1724.	1.8	12
20	Crosslinked Proton Exchange Membranes with a Wider Working Temperature Based on Phosphonic Acid Functionalized Siloxane and PPO. Macromolecular Research, 2021, 29, 199-210.	1.0	11
21	Synthesis of cyanoethyl konjac glucomannan and its liquid crystalline behavior in an ionic liquid. Journal of Polymer Research, 2012, 19, 1.	1.2	10
22	WATER-RESISTANT CELLULOSE FILMS COATED WITH POLYURETHANE-ACRYLAMIDE GRAFTED KONJAC GLUCOMANNAN. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 33-42.	1.2	9
23	<i>In situ</i> pHâ€decreaseâ€induced gelation of sodium alginate/carboxymethylated konjac glucomannan. Journal of Applied Polymer Science, 2008, 108, 2825-2832.	1.3	8
24	Proton Exchange Membrane with Enlarged Operating Temperature by Incorporating Phosphonic Acid Functionalized and Crosslinked Siloxane in Sulfonated Poly(ether ether ketone) (SPEEK) Matrix. Macromolecular Research, 2018, 26, 173-181.	1.0	8
25	Effect of the synthesis route on the structure and properties of polyurethane/nitrokonjac glucomannan semi-interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 90, 1948-1954.	1.3	7
26	Dissolution of konjac glucomannan with room temperature ionic liquids. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 703-709.	0.4	7
27	Novel imidazoleâ€grafted hybrid anion exchange membranes based on poly(2,6â€dimethylâ€1,4â€phenylene) 1	j ETQq1 1 1.3	0.784314 rg
28	Preparation and characterization of chitosan gel beads crosslinked by organic titanium. Journal of Polymer Research, 2015, 22, 1.	1.2	5
29	Study on synthesis and demolding performance of polyethylene glycol fatty acid mold release agents. Polymers for Advanced Technologies, 2021, 32, 4061-4069.	1.6	5
30	Trimethyl-Ammonium Alkaline Anion Exchange Membranes with the Vinylbenzyl Chloride/Acrylonitrile Main Chain. Macromolecular Research, 2021, 29, 494-504.	1.0	5
31	Preparation Process Orthogonal Optimization and Mechanical Properties of Microcellular Foam Polypropylene. Macromolecular Materials and Engineering, 2021, 306, 2100350.	1.7	4
32	Synthesis and characterization of poly(ester urethane)/nitrokonjac glucomannan semi-interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 90, 2224-2228.	1.3	3
33	Konjac glucomannan nanocrystals prepared by acid hydrolysis. E-Polymers, 2010, 10, .	1.3	3
34	Reinforcing and toughening of polyurethane by chemically modified Konjac glucomannan nanocrystal. Polymer Composites, 2017, 38, 1447-1453.	2.3	3
35	Gelation of Konjac glucomannan crosslinked by organotitanium chelated with different ligands. Journal of Sol-Gel Science and Technology, 2021, 98, 401-410.	1.1	3
36	PP/POE thermoplastic elastomer prepared by dynamic vulcanization and its flame retardant modification. Journal of Elastomers and Plastics, 0, , 009524432110290.	0.7	3

Shanjun Gao

#	Article	IF	CITATIONS
37	Preparation and characterization of deacetylated konjac glucomannan / pectin composite films crosslinked with calcium hydroxide. Journal of Polymer Research, 2022, 29, .	1.2	3
38	Acid-base high temperature proton exchange membranes prepared from phosphonic acid functionalized siloxane. Ionics, 2017, 23, 949-958.	1.2	2
39	Intumescent Flame-retardant Modification of Polypropylene/Carbon Fiber Composites. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 163-169.	0.4	2
40	Rheological properties of konjac glucomannan/SiO2/organic-borate gels. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 575-580.	0.4	0
41	Preparation and characterization of a foam regulator with ultraâ€high molecular weight. Journal of Applied Polymer Science, 2017, 134, .	1.3	Ο
42	Preparation and characterization of proton exchange membrane based on polyphosphoric acid modified by <scp>PVDF</scp> â€ <scp>HFP</scp> . Journal of Applied Polymer Science, 2018, 135, 46737.	1.3	0
43	Pure, simple and green synthesis of magnesium oxysulphate whiskers through hydrothermal reaction. Micro and Nano Letters, 2019, 14, 245-248.	0.6	Ο