## **Karine Philippot**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6685774/publications.pdf Version: 2024-02-01



KADINE DHILIDDOT

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ligand-Stabilized Ruthenium Nanoparticles:Â Synthesis, Organization, and Dynamics. Journal of the<br>American Chemical Society, 2001, 123, 7584-7593.                                                             | 6.6  | 336       |
| 2  | A Case for Enantioselective Allylic Alkylation Catalyzed by Palladium Nanoparticles. Journal of the<br>American Chemical Society, 2004, 126, 1592-1593.                                                           | 6.6  | 288       |
| 3  | An Efficient Strategy to Drive Nanoparticles into Carbon Nanotubes and the Remarkable Effect of<br>Confinement on Their Catalytic Performance. Angewandte Chemie - International Edition, 2009, 48,<br>2529-2533. | 7.2  | 237       |
| 4  | Ruthenium Nanoparticles Stabilized by Nâ€Heterocyclic Carbenes: Ligand Location and Influence on<br>Reactivity. Angewandte Chemie - International Edition, 2011, 50, 12080-12084.                                 | 7.2  | 199       |
| 5  | Influence of organic ligands on the stabilization of palladium nanoparticles. Journal of<br>Organometallic Chemistry, 2004, 689, 4601-4610.                                                                       | 0.8  | 174       |
| 6  | The hydrogenation of nitroarenes mediated by platinum nanoparticles: an overview. Catalysis Science and Technology, 2014, 4, 2445-2465.                                                                           | 2.1  | 152       |
| 7  | Organometallic Synthesis of Size-Controlled Polycrystalline Ruthenium Nanoparticles in the Presence of Alcohols. Advanced Functional Materials, 2003, 13, 118-126.                                                | 7.8  | 151       |
| 8  | Organometallic approach to the synthesis and surface reactivity of noble metal nanoparticles.<br>Comptes Rendus Chimie, 2003, 6, 1019-1034.                                                                       | 0.2  | 146       |
| 9  | Platinum nanoparticles stabilized by CO and octanethiol ligands or polymers: FT-IR, NMR, HREM and WAXS studies. New Journal of Chemistry, 1998, 22, 703-712.                                                      | 1.4  | 140       |
| 10 | Shape Control of Platinum Nanoparticles. Advanced Functional Materials, 2007, 17, 2219-2228.                                                                                                                      | 7.8  | 138       |
| 11 | Catalysis with Colloidal Ruthenium Nanoparticles. Chemical Reviews, 2020, 120, 1085-1145.                                                                                                                         | 23.0 | 137       |
| 12 | Novel, Spongelike Ruthenium Particles of Controllable Size Stabilized Only by Organic Solvents.<br>Angewandte Chemie - International Edition, 1999, 38, 3736-3738.                                                | 7.2  | 131       |
| 13 | Organized 3D-alkyl imidazolium ionic liquids could be used to control the size of in situ generated ruthenium nanoparticles?. Journal of Materials Chemistry, 2009, 19, 3624.                                     | 6.7  | 131       |
| 14 | Organometallic approach for the synthesis of nanostructures. New Journal of Chemistry, 2013, 37, 3374.                                                                                                            | 1.4  | 127       |
| 15 | NHC-stabilized ruthenium nanoparticles as new catalysts for the hydrogenation of aromatics.<br>Catalysis Science and Technology, 2013, 3, 99-105.                                                                 | 2.1  | 126       |
| 16 | A New Synthetic Method toward Bimetallic Ruthenium Platinum Nanoparticles; Composition Induced<br>Structural Changes. Journal of Physical Chemistry B, 1999, 103, 10098-10101.                                    | 1.2  | 125       |
| 17 | Influence of the self-organization of ionic liquids on the size of ruthenium nanoparticles: effect of the temperature and stirring. Journal of Materials Chemistry, 2007, 17, 3290.                               | 6.7  | 125       |
| 18 | Direct NMR Evidence for the Presence of Mobile Surface Hydrides on Ruthenium Nanoparticles.<br>ChemPhysChem, 2005, 6, 605-607.                                                                                    | 1.0  | 122       |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Catalytic investigation of rhodium nanoparticles in hydrogenation of benzene and phenylacetylene.<br>Journal of Molecular Catalysis A, 2002, 178, 55-61.                                                             | 4.8 | 121       |
| 20 | Reactions of Olefins with Ruthenium Hydride Nanoparticles: NMR Characterization, Hydride Titration,<br>and Roomâ€Temperature CC Bond Activation. Angewandte Chemie - International Edition, 2008, 47,<br>2074-2078. | 7.2 | 121       |
| 21 | Surfactant-Stabilized Aqueous Iridium(0) Colloidal Suspension: An Efficient Reusable Catalyst for<br>Hydrogenation of Arenes in Biphasic Media. Advanced Synthesis and Catalysis, 2004, 346, 72-76.                  | 2.1 | 120       |
| 22 | Enantiospecific CH Activation Using Ruthenium Nanocatalysts. Angewandte Chemie - International<br>Edition, 2015, 54, 10474-10477.                                                                                   | 7.2 | 118       |
| 23 | Synthesis, characterization and catalytic reactivity of ruthenium nanoparticles stabilized by chiral<br>N-donor ligands. New Journal of Chemistry, 2006, 30, 115-122.                                                | 1.4 | 111       |
| 24 | Organometallic Ruthenium Nanoparticles: A Comparative Study of the Influence of the Stabilizer on their Characteristics and Reactivity. ChemCatChem, 2013, 5, 28-45.                                                 | 1.8 | 108       |
| 25 | In Situ Formation of Cold Nanoparticles within Thiol Functionalized HMS-C16and SBA-15 Type Materials via an Organometallic Two-Step Approach. Chemistry of Materials, 2003, 15, 2017-2024.                           | 3.2 | 101       |
| 26 | Gold nanoparticles from self-assembled gold(i) amine precursors. Chemical Communications, 2000, ,<br>1945-1946.                                                                                                      | 2.2 | 98        |
| 27 | A single-step procedure for the preparation of palladium nanoparticles and a<br>phosphine-functionalized support as catalyst for Suzuki cross-coupling reactions. Journal of<br>Catalysis, 2010, 276, 382-389.       | 3.1 | 94        |
| 28 | Controlled metal nanostructures: Fertile ground for coordination chemists. Coordination Chemistry Reviews, 2016, 308, 409-432.                                                                                       | 9.5 | 93        |
| 29 | Ruthenium Nanoparticles for Catalytic Water Splitting. ChemSusChem, 2019, 12, 2493-2514.                                                                                                                             | 3.6 | 93        |
| 30 | Phosphine-Stabilized Ruthenium Nanoparticles: The Effect of the Nature of the Ligand in Catalysis. ACS Catalysis, 2012, 2, 317-321.                                                                                  | 5.5 | 90        |
| 31 | Platinum Nâ€Heterocyclic Carbene Nanoparticles as New and Effective Catalysts for the Selective<br>Hydrogenation of Nitroaromatics. ChemCatChem, 2014, 6, 87-90.                                                     | 1.8 | 89        |
| 32 | Rhodium-catalysed hydroamination-hydroarylation of norbornene with aniline, toluidines or diphenylamine. Journal of Organometallic Chemistry, 1994, 469, 221-228.                                                    | 0.8 | 83        |
| 33 | Direct Observation of the Reversible Changes of the Morphology of Pt Nanoparticles under Gas<br>Environment. Journal of Physical Chemistry C, 2010, 114, 2160-2163.                                                  | 1.5 | 83        |
| 34 | Cyclodextrin-based systems for the stabilization of metallic(0) nanoparticles and their versatile applications in catalysis. Catalysis Today, 2014, 235, 20-32.                                                      | 2.2 | 83        |
| 35 | A porous Ru nanomaterial as an efficient electrocatalyst for the hydrogen evolution reaction under acidic and neutral conditions. Chemical Communications, 2017, 53, 11713-11716.                                    | 2.2 | 83        |
| 36 | In situ formation of gold nanoparticles within functionalised ordered mesoporous silica via an organometallic â€~chimie douce' approach. Chemical Communications, 2001, , 1374-1375.                                 | 2.2 | 82        |

3

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Aminopropyltriethoxysilane stabilized ruthenium(0) nanoclusters as an isolable and reusable<br>heterogeneous catalyst for the dehydrogenation of dimethylamine–borane. Chemical<br>Communications, 2010, 46, 2938. | 2.2 | 82        |
| 38 | A simple and reproducible method for the synthesis of silica-supported rhodium nanoparticles and their investigation in the hydrogenation of aromatic compounds. New Journal of Chemistry, 2006, 30, 1214-1219.    | 1.4 | 77        |
| 39 | A new and specific mode of stabilization of metallic nanoparticles. Chemical Communications, 2008, ,<br>3296.                                                                                                      | 2.2 | 77        |
| 40 | Location and Dynamics of CO Co-ordination on Ru Nanoparticles: A Solid State NMR Study. Catalysis<br>Letters, 2010, 140, 1-7.                                                                                      | 1.4 | 77        |
| 41 | Kinetics of hydrogen evolution reaction on stabilized Ni, Pt and Ni–Pt nanoparticles obtained by an organometallic approach. International Journal of Hydrogen Energy, 2012, 37, 4798-4811.                        | 3.8 | 77        |
| 42 | Ligand-Capped Ru Nanoparticles as Efficient Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 11094-11102.                                                                              | 5.5 | 70        |
| 43 | Palladium Catalytic Species Containing Chiral Phosphites: Towards a Discrimination between<br>Molecular and Colloidal Catalysts. Advanced Synthesis and Catalysis, 2007, 349, 2459-2469.                           | 2.1 | 68        |
| 44 | A novel stabilisation model for ruthenium nanoparticles in imidazolium ionic liquids: in situ spectroscopic and labelling evidence. Physical Chemistry Chemical Physics, 2010, 12, 4217.                           | 1.3 | 68        |
| 45 | Diphosphite ligands derived from carbohydrates as stabilizers for ruthenium nanoparticles: promising catalytic systems in arene hydrogenation. Chemical Communications, 2008, , 2759.                              | 2.2 | 65        |
| 46 | Long-chain NHC-stabilized RuNPs as versatile catalysts for one-pot oxidation/hydrogenation reactions. Chemical Communications, 2016, 52, 4768-4771.                                                                | 2.2 | 63        |
| 47 | Secondary phosphineoxides as pre-ligands for nanoparticle stabilization. Catalysis Science and Technology, 2013, 3, 595-599.                                                                                       | 2.1 | 60        |
| 48 | Synthesis of New RuO <sub>2</sub> @SiO <sub>2</sub> Composite Nanomaterials and their Application as Catalytic Filters for Selective Gas Detection. Advanced Functional Materials, 2007, 17, 3339-3347.            | 7.8 | 55        |
| 49 | Chiral Diphosphiteâ€Modified Rhodium(0) Nanoparticles: Catalyst Reservoir for Styrene<br>Hydroformylation. European Journal of Inorganic Chemistry, 2008, 2008, 3460-3466.                                         | 1.0 | 54        |
| 50 | Carbohydrateâ€Derived 1,3â€Diphosphite Ligands as Chiral Nanoparticle Stabilizers: Promising Catalytic<br>Systems for Asymmetric Hydrogenation. ChemSusChem, 2009, 2, 769-779.                                     | 3.6 | 54        |
| 51 | New Route to Stabilize Ruthenium Nanoparticles with Nonâ€Isolable Chiral Nâ€Heterocyclic Carbenes.<br>Chemistry - A European Journal, 2015, 21, 17495-17502.                                                       | 1.7 | 54        |
| 52 | Size-controllable APTS stabilized ruthenium(0)nanoparticlescatalyst for the dehydrogenation of<br>dimethylamine–borane at room temperature. Dalton Transactions, 2012, 41, 590-598.                                | 1.6 | 51        |
| 53 | PTA‣tabilized Ruthenium and Platinum Nanoparticles: Characterization and Investigation in Aqueous<br>Biphasic Hydrogenation Catalysis. European Journal of Inorganic Chemistry, 2012, 2012, 1229-1236.<br>         | 1.0 | 51        |
| 54 | A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles. Chemical Communications, 2015, 51, 4647-4650.                                     | 2.2 | 51        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Surface Chemistry on Small Ruthenium Nanoparticles: Evidence for Site Selective Reactions and<br>Influence of Ligands. Chemistry - A European Journal, 2014, 20, 1287-1297.                                        | 1.7 | 50        |
| 56 | Platinum colloids stabilized by bifunctional ligands: self-organization and connection to gold.<br>Chemical Communications, 2001, , 1474-1475.                                                                     | 2.2 | 49        |
| 57 | Carbon-supported Pd nanoparticles as catalysts for anthracene hydrogenation. Fuel, 2014, 116, 729-735.                                                                                                             | 3.4 | 49        |
| 58 | New Ru Nanoparticles Stabilized by Organosilane Fragments. Chemistry of Materials, 2004, 16, 4937-4941.                                                                                                            | 3.2 | 48        |
| 59 | Zwitterionic amidinates as effective ligands for platinum nanoparticle hydrogenation catalysts.<br>Chemical Science, 2017, 8, 2931-2941.                                                                           | 3.7 | 48        |
| 60 | Versatile dual hydrogenation–oxidation nanocatalysts for the aqueous transformation of biomass-derived platform molecules. Green Chemistry, 2012, 14, 1434.                                                        | 4.6 | 47        |
| 61 | Carbon-supported Ru and Pd nanoparticles: Efficient and recyclable catalysts for the aerobic oxidation of benzyl alcohol in water. Microporous and Mesoporous Materials, 2012, 153, 155-162.                       | 2.2 | 47        |
| 62 | About the Use of Rhodium Nanoparticles in Hydrogenation and Hydroformylation Reactions. Current<br>Organic Chemistry, 2013, 17, 364-399.                                                                           | 0.9 | 47        |
| 63 | Ag–Pd and CuO–Pd nanoparticles in a hydroxyl-group functionalized ionic liquid: synthesis,<br>characterization and catalytic performance. Catalysis Science and Technology, 2015, 5, 1683-1692.                    | 2.1 | 46        |
| 64 | Deoxygenation of oleic acid: Influence of the synthesis route of Pd/mesoporous carbon nanocatalysts onto their activity and selectivity. Applied Catalysis A: General, 2015, 504, 81-91.                           | 2.2 | 46        |
| 65 | Organometallic Preparation of Ni, Pd, and NiPd Nanoparticles for the Design of Supported Nanocatalysts. ACS Catalysis, 2014, 4, 1735-1742.                                                                         | 5.5 | 45        |
| 66 | Rhodium-mediated 100% regioselective oxidative hydroamination of α-olefins Tetrahedron Letters,<br>1993, 34, 3877-3880.                                                                                            | 0.7 | 44        |
| 67 | Ruthenium nanoparticles in ionic liquids: structural and stability effects of polar solutes. Physical<br>Chemistry Chemical Physics, 2011, 13, 13527.                                                              | 1.3 | 42        |
| 68 | Influence of amines on the size control of in situ synthesized ruthenium nanoparticles in imidazolium<br>ionic liquids. Dalton Transactions, 2011, 40, 4660.                                                       | 1.6 | 42        |
| 69 | Organometallic Ruthenium Nanoparticles as Model Catalysts for CO Hydrogenation: A Nuclear<br>Magnetic Resonance and Ambient-Pressure X-ray Photoelectron Spectroscopy Study. ACS Catalysis,<br>2014, 4, 3160-3168. | 5.5 | 42        |
| 70 | Rh nanoparticles with NiO x surface decoration for selective hydrogenolysis of C O bond over arene<br>hydrogenation. Journal of Molecular Catalysis A, 2016, 422, 188-197.                                         | 4.8 | 42        |
| 71 | An organometallic approach for the synthesis of water-soluble ruthenium and platinum nanoparticles. Dalton Transactions, 2009, , 10172.                                                                            | 1.6 | 41        |
| 72 | Enantioselective hydrogenation of ketones by iridium nanoparticles ligated with chiral secondary phosphine oxides. Catalysis Science and Technology, 2016, 6, 3758-3766.                                           | 2.1 | 41        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Novel super-structures resulting from the coordination of chiral oxazolines on platinum nanoparticles. New Journal of Chemistry, 2003, 27, 114-120.                                                                                             | 1.4 | 40        |
| 74 | Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions. Microporous and Mesoporous Materials, 2005, 79, 185-194.                                                                         | 2.2 | 40        |
| 75 | Unexpected catalytic and stereoselective hydroarylation of norbornene during the attempted rhodium-catalysed hydroamination of norbornene with aniline or diphenylamine. Journal of the Chemical Society Chemical Communications, 1992, , 1215. | 2.0 | 39        |
| 76 | Organometallic Nanoparticles of Metals or Metal Oxides. Oil and Gas Science and Technology, 2007, 62, 799-817.                                                                                                                                  | 1.4 | 38        |
| 77 | Alkyl sulfonated diphosphines-stabilized ruthenium nanoparticles as efficient nanocatalysts in hydrogenation reactions in biphasic media. Catalysis Today, 2012, 183, 34-41.                                                                    | 2.2 | 38        |
| 78 | General synthesis of 2-acyloxy-1,3-dienes in one step from carboxylic acids and butenyne derivatives.<br>Journal of the Chemical Society Chemical Communications, 1990, , 1199.                                                                 | 2.0 | 37        |
| 79 | Transformation of CO2 by using nanoscale metal catalysts: cases studies on the formation of formic acid and dimethylether. Current Opinion in Chemical Engineering, 2018, 20, 86-92.                                                            | 3.8 | 37        |
| 80 | Methylated β yclodextrin apped Ruthenium Nanoparticles: Synthesis Strategies, Characterization, and Application in Hydrogenation Reactions. ChemCatChem, 2013, 5, 1497-1503.                                                                    | 1.8 | 36        |
| 81 | Soluble Platinum Nanoparticles Ligated by Longâ€Chain Nâ€Heterocyclic Carbenes as Catalysts. Chemistry -<br>A European Journal, 2017, 23, 12779-12786.                                                                                          | 1.7 | 36        |
| 82 | Ruthenium nanoparticles ligated by cholesterol-derived NHCs and their application in the hydrogenation of arenes. Chemical Communications, 2018, 54, 7070-7073.                                                                                 | 2.2 | 36        |
| 83 | Size and composition effects in polymer-protected ultrafine bimetallicPtxRu1â^'x(0 <x<1)particles.<br>Physical Review B, 2001, 63, .</x<1)particles.<br>                                                                                        | 1.1 | 35        |
| 84 | Gas Phase Catalysis by Metal Nanoparticles in Nanoporous Alumina Membranes. Zeitschrift Fur<br>Anorganische Und Allgemeine Chemie, 2004, 630, 1913-1918.                                                                                        | 0.6 | 34        |
| 85 | Segregation at a small scale: synthesis of core–shell bimetallic RuPt nanoparticles, characterization and solid state NMR studies. Journal of Materials Chemistry, 2012, 22, 3578.                                                              | 6.7 | 34        |
| 86 | Taking advantage of a terpyridine ligand for the deposition of Pd nanoparticles onto a magnetic material for selective hydrogenation reactions. Journal of Materials Chemistry A, 2013, 1, 1441-1449.                                           | 5.2 | 34        |
| 87 | NHC-stabilized Ru nanoparticles: Synthesis and surface studies. Nano Structures Nano Objects, 2016, 6, 39-45.                                                                                                                                   | 1.9 | 34        |
| 88 | TEM and HRTEM Evidence for the Role of Ligands in the Formation of Shape ontrolled Platinum Nanoparticles. Small, 2011, 7, 235-241.                                                                                                             | 5.2 | 33        |
| 89 | Synthesis of Monodisperse Heptanol Stabilized Ruthenium Nanoparticles. Evidence for the Presence of Surface Hydrogens. Zeitschrift Fur Physikalische Chemie, 2003, 217, 1539-1548.                                                              | 1.4 | 32        |
| 90 | Pd and Pd@PdO core–shell nanoparticles supported on Vulcan carbon XC-72R: comparison of<br>electroactivity for methanol electro-oxidation reaction. Journal of Materials Science, 2019, 54,<br>13694-13714.                                     | 1.7 | 32        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Solid State and Gas Phase NMR Studies of Immobilized Catalysts and Catalytic Active Nanoparticles.<br>Topics in Catalysis, 2008, 48, 75-83.                                                                                   | 1.3 | 30        |
| 92  | Phosphaneâ€decorated Platinum Nanoparticles as Efficient Catalysts for H <sub>2</sub> Generation from Ammonia Borane and Methanol. ChemCatChem, 2019, 11, 766-771.                                                            | 1.8 | 30        |
| 93  | Indium and indium-oxide nanoparticle or nanorod formation within functionalised ordered mesoporous silica. New Journal of Chemistry, 2003, 27, 1029-1031.                                                                     | 1.4 | 29        |
| 94  | Investigation of the surface chemistry of phosphine-stabilized ruthenium nanoparticles – an advanced solid-state NMR study. Physical Chemistry Chemical Physics, 2013, 15, 17383.                                             | 1.3 | 29        |
| 95  | Efficient Ruthenium Nanocatalysts in Liquid–Liquid Biphasic Hydrogenation Catalysis: Towards a<br>Supramolecular Control through a Sulfonated Diphosphine–Cyclodextrin Smart Combination.<br>ChemCatChem, 2013, 5, 3802-3811. | 1.8 | 29        |
| 96  | Efficient and recyclable carbon-supported Pd nanocatalysts for the Suzuki–Miyaura reaction in<br>aqueous-based media: Microwave vs conventional heating. Applied Catalysis A: General, 2013, 468, 59-67.                      | 2.2 | 29        |
| 97  | Synthesis of Ruthenium Nanoparticles Stabilized by Heavily Fluorinated Compounds. Advanced<br>Functional Materials, 2006, 16, 2008-2015.                                                                                      | 7.8 | 28        |
| 98  | In Situ Formed Catalytically Active Ruthenium Nanocatalyst in Room Temperature<br>Dehydrogenation/Dehydrocoupling of Ammonia-Borane from Ru(cod)(cot) Precatalyst. Langmuir, 2012,<br>28, 4908-4914.                          | 1.6 | 28        |
| 99  | Model arenes hydrogenation with silica-supported rhodium nanoparticles: The role of the silica grains and of the solvent on catalytic activities. Catalysis Communications, 2009, 10, 1235-1239.                              | 1.6 | 27        |
| 100 | Palladium catalytic systems with hybrid pyrazole ligands in C–C coupling reactions. Nanoparticles versus molecular complexes. Catalysis Science and Technology, 2013, 3, 475-489.                                             | 2.1 | 27        |
| 101 | Probing the surface of platinum nanoparticles with13CO by solid-state NMR and IR spectroscopies.<br>Nanoscale, 2014, 6, 539-546.                                                                                              | 2.8 | 27        |
| 102 | Kinetic investigation into the chemoselective hydrogenation of α,β-unsaturated carbonyl compounds<br>catalyzed by Ni(0) nanoparticles. Dalton Transactions, 2017, 46, 5082-5090.                                              | 1.6 | 27        |
| 103 | Facile synthesis of ultra-small rhenium nanoparticles. Chemical Communications, 2014, 50, 10809.                                                                                                                              | 2.2 | 26        |
| 104 | Hydrogenation Processes at the Surface of Ruthenium Nanoparticles: A NMR Study. Topics in Catalysis, 2013, 56, 1253-1261.                                                                                                     | 1.3 | 25        |
| 105 | Design of New N,O Hybrid Pyrazole Derived Ligands and Their Use as Stabilizers for the Synthesis of Pd<br>Nanoparticles. Langmuir, 2010, 26, 15532-15540.                                                                     | 1.6 | 24        |
| 106 | Carbon dioxide conversion to dimethyl carbonate: The effect of silica as support for SnO2 and ZrO2 catalysts. Comptes Rendus Chimie, 2011, 14, 780-785.                                                                       | 0.2 | 24        |
| 107 | Tin-decorated ruthenium nanoparticles: a way to tune selectivity in hydrogenation reaction.<br>Nanoscale, 2014, 6, 9806-9816.                                                                                                 | 2.8 | 24        |
| 108 | On the influence of diphosphine ligands on the chemical order in small RuPt nanoparticles: combined structural and surface reactivity studies. Dalton Transactions, 2013, 42, 372-382.                                        | 1.6 | 23        |

| #   | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Oxidation of methane to methanol over Pd@Pt nanoparticles under mild conditions in water.<br>Catalysis Science and Technology, 2021, 11, 3493-3500.                                                                                                            | 2.1 | 23        |
| 110 | Seed-mediated synthesis of bimetallic ruthenium–platinum nanoparticles efficient in cinnamaldehyde selective hydrogenation. Dalton Transactions, 2014, 43, 9283-9295.                                                                                          | 1.6 | 22        |
| 111 | Title is missing!. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 1217-1222.                                                                                                                                                                   | 0.6 | 21        |
| 112 | A recoverable Pd nanocatalyst for selective semi-hydrogenation of alkynes: hydrogenation of benzyl-propargylamines as a challenging model. Green Chemistry, 2014, 16, 4566-4574.                                                                               | 4.6 | 21        |
| 113 | [Ru(0)]@SiO <sub>2</sub> and [RuO <sub>2</sub> ]@SiO <sub>2</sub> Hybrid Nanomaterials: From<br>Their Synthesis to Their Application as Catalytic Filters for Gas Sensors. Advanced Functional<br>Materials, 2009, 19, 3781-3787.                              | 7.8 | 20        |
| 114 | Ligand effect on the NMR, vibrational and structural properties of tetra- and hexanuclear ruthenium hydrido clusters: a theoretical investigation. Dalton Transactions, 2009, , 2142.                                                                          | 1.6 | 20        |
| 115 | Organometallic Ruthenium Nanoparticles and Catalysis. Topics in Organometallic Chemistry, 2014, , 319-370.                                                                                                                                                     | 0.7 | 20        |
| 116 | Ligand effect on the catalytic activity of ruthenium nanoparticles in ionic liquids. Dalton<br>Transactions, 2012, 41, 13919.                                                                                                                                  | 1.6 | 19        |
| 117 | Carboxylic acid-capped ruthenium nanoparticles: experimental and theoretical case study with ethanoic acid. Nanoscale, 2019, 11, 9392-9409.                                                                                                                    | 2.8 | 19        |
| 118 | An air-stable, reusable Ni@Ni(OH) <sub>2</sub> nanocatalyst for CO <sub>2</sub> /bicarbonate<br>hydrogenation to formate. Nanoscale, 2021, 13, 8931-8939.                                                                                                      | 2.8 | 19        |
| 119 | Rhodium colloidal suspension deposition on porous silica particles by dry impregnation: Study of the influence of the reaction conditions on nanoparticles location and dispersion and catalytic reactivity. Chemical Engineering Journal, 2009, 151, 372-379. | 6.6 | 18        |
| 120 | Using click chemistry to access mono- and ditopic β-cyclodextrin hosts substituted by chiral amino acids. Carbohydrate Research, 2011, 346, 210-218.                                                                                                           | 1.1 | 18        |
| 121 | Polymer versus phosphine stabilized Rh nanoparticles as components of supported catalysts:<br>implication in the hydrogenation of cyclohexene model molecule. Dalton Transactions, 2016, 45,<br>17782-17791.                                                   | 1.6 | 18        |
| 122 | Tuning the selectivity of phenol hydrogenation using Pd, Rh and Ru nanoparticles supported on ceria-<br>and titania-modified silicas. Catalysis Today, 2021, 381, 126-132.                                                                                     | 2.2 | 18        |
| 123 | Structure and activity of supported bimetallic NiPd nanoparticles: influence of preparation method on CO <sub>2</sub> reduction. ChemCatChem, 2020, 12, 2967-2976.                                                                                             | 1.8 | 17        |
| 124 | Organocatalytic <i>vs.</i> Ru-based electrochemical hydrogenation of nitrobenzene in competition with the hydrogen evolution reaction. Dalton Transactions, 2020, 49, 6446-6456.                                                                               | 1.6 | 17        |
| 125 | Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles. Dalton Transactions, 2016, 45, 19368-19373.                                                                                                                                          | 1.6 | 16        |
| 126 | Ruthenium Nanoparticles Supported on Carbon Microfibers for Hydrogen Evolution Electrocatalysis.<br>European Journal of Inorganic Chemistry, 2019, 2019, 2071-2077.                                                                                            | 1.0 | 16        |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Multi-site coordination N-phosphanylamidine ligands as stabilizers for the synthesis of ruthenium nanoparticles. New Journal of Chemistry, 2011, 35, 2653.                                                     | 1.4 | 15        |
| 128 | β-Cyclodextrins grafted with chiral amino acids: A promising supramolecular stabilizer of nanoparticles for asymmetric hydrogenation?. Applied Catalysis A: General, 2013, 467, 497-503.                       | 2.2 | 15        |
| 129 | Alkyl phosphonic acid-based ligands as tools for converting hydrophobic iron nanoparticles into<br>water soluble iron–iron oxide core–shell nanoparticles. New Journal of Chemistry, 2017, 41,<br>11898-11905. | 1.4 | 15        |
| 130 | Study of the influence of PPh3 used as capping ligand or as reaction modifier for hydroformylation reaction involving Rh NPs as precatalyst. Applied Catalysis A: General, 2017, 548, 136-142.                 | 2.2 | 15        |
| 131 | Organometallic Derived Metals, Colloids, and Nanoparticles. , 2007, , 71-99.                                                                                                                                   |     | 14        |
| 132 | Carbon-supported Palladium and Ruthenium Nanoparticles: Application as Catalysts in Alcohol<br>Oxidation, Cross-coupling and Hydrogenation Reactions. Recent Patents on Nanotechnology, 2013, 7,<br>247-264.   | 0.7 | 14        |
| 133 | Production of supported asymmetric catalysts in a fluidised bed. Powder Technology, 2005, 157, 12-19.                                                                                                          | 2.1 | 13        |
| 134 | Formation of nanocomposites of platinum nanoparticles embedded into heavily fluorinated aniline and displaying long range organization. Journal of Materials Chemistry, 2008, 18, 660-666.                     | 6.7 | 13        |
| 135 | Synthesis of composite ruthenium-containing silica nanomaterials from amine-stabilized ruthenium nanoparticles as elemental bricks. Journal of Materials Chemistry, 2010, 20, 9523.                            | 6.7 | 13        |
| 136 | Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from<br>organometallic precursors and supported on carbon vulcan. Journal of Nanoparticle Research, 2015,<br>17, 1.    | 0.8 | 13        |
| 137 | Strawberry-like SiO <sub>2</sub> @Pd and Pt nanomaterials. New Journal of Chemistry, 2014, 38, 6103-6113.                                                                                                      | 1.4 | 12        |
| 138 | Rhodium nanoparticles stabilized by ferrocenyl-phosphine ligands: synthesis and catalytic styrene<br>hydrogenation. Dalton Transactions, 2019, 48, 6777-6786.                                                  | 1.6 | 12        |
| 139 | Self-assembled platinum nanoparticles into heavily fluorinated templates: reactive gas effect on the morphology. New Journal of Chemistry, 2009, 33, 1529.                                                     | 1.4 | 11        |
| 140 | Light-driven water oxidation using hybrid photosensitizer-decorated Co3O4 nanoparticles. Materials<br>Today Energy, 2018, 9, 506-515.                                                                          | 2.5 | 11        |
| 141 | Reactions of D 2 with 1,4â€Bis(diphenylphosphino) butaneâ€Stabilized Metal Nanoparticlesâ€A Combined<br>Gasâ€phase NMR, GCâ€MS and Solidâ€state NMR Study. ChemCatChem, 2019, 11, 1465-1471.                   | 1.8 | 11        |
| 142 | Synthesis of Supported Catalysts by Dry Impregnation in Fluidized Bed. Chemical Engineering Research and Design, 2007, 85, 767-777.                                                                            | 2.7 | 9         |
| 143 | A green route for the synthesis of a bitter-taste dipeptide combining biocatalysis, heterogeneous metal catalysis and magnetic nanoparticles. RSC Advances, 2015, 5, 36449-36455.                              | 1.7 | 9         |
| 144 | Active hydrogenation Rh nanocatalysts protected by new self-assembled supramolecular complexes of cyclodextrins and surfactants in water. RSC Advances, 2016, 6, 108125-108131.                                | 1.7 | 9         |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Dissimilar catalytic behavior of molecular or colloidal palladium systems with a new NHC ligand.<br>Dalton Transactions, 2017, 46, 11768-11778.                                                                            | 1.6 | 9         |
| 146 | The role of catalyst–support interactions in oxygen evolution anodes based on Co(OH) <sub>2</sub><br>nanoparticles and carbon microfibers. Catalysis Science and Technology, 2020, 10, 4513-4521.                          | 2.1 | 9         |
| 147 | Bimetallic RuNi nanoparticles as catalysts for upgrading biomass: metal dilution and solvent effects<br>on selectivity shifts. Green Chemistry, 2021, 23, 8480-8500.                                                       | 4.6 | 9         |
| 148 | Control of reactivity through chemical order in very small RuRe nanoparticles. Dalton Transactions, 2017, 46, 15070-15079.                                                                                                 | 1.6 | 8         |
| 149 | Synthesis of Rh nanoparticles in alcohols: magnetic and electrocatalytic properties. Journal of Materials Science, 2018, 53, 8933-8950.                                                                                    | 1.7 | 8         |
| 150 | TiO2-mediated visible-light-driven hydrogen evolution by ligand-capped Ru nanoparticles. Sustainable<br>Energy and Fuels, 2020, 4, 4170-4178.                                                                              | 2.5 | 7         |
| 151 | Rhodium nanoparticles inside well-defined unimolecular amphiphilic polymeric nanoreactors: synthesis and biphasic hydrogenation catalysis. Nanoscale Advances, 2021, 3, 2554-2566.                                         | 2.2 | 7         |
| 152 | Dry impregnation in fluidized bed: Drying and calcination effect on nanoparticles dispersion and location in a porous support. Chemical Engineering Research and Design, 2008, 86, 349-358.                                | 2.7 | 6         |
| 153 | In Situ Ruthenium Catalyst Modification for the Conversion of Furfural to 1,2-Pentanediol.<br>Nanomaterials, 2022, 12, 328.                                                                                                | 1.9 | 6         |
| 154 | Metal Nanocatalysts in Solution: Characterization and Reactivity. Topics in Catalysis, 2013, 56, 1153-1153.                                                                                                                | 1.3 | 5         |
| 155 | DFT calculations in periodic boundary conditions of gas-phase acidities and of transition-metal anionic clusters: case study with carboxylate-stabilized ruthenium clusters. Theoretical Chemistry Accounts, 2019, 138, 1. | 0.5 | 4         |
| 156 | Water Transfer of Hydrophobic Nanoparticles: Principles and Methods. , 2016, , 1279-1311.                                                                                                                                  |     | 4         |
| 157 | CHAPTER 4. Organometallic Approach for the Synthesis of Noble Metal Nanoparticles: Towards Application in Colloidal and Supported Nanocatalysis. RSC Catalysis Series, 0, , 47-82.                                         | 0.1 | 4         |
| 158 | Covalent Grafting of Ruthenium Complexes on Iron Oxide Nanoparticles: Hybrid Materials for<br>Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 53829-53840.                                   | 4.0 | 4         |
| 159 | Ru nanoparticles supported on alginate-derived graphene as hybrid electrodes for the hydrogen evolution reaction. New Journal of Chemistry, 2021, 46, 49-56.                                                               | 1.4 | 4         |
| 160 | When organophosphorus ruthenium complexes covalently bind to ruthenium nanoparticles to form nanoscale hybrid materials. Chemical Communications, 2020, 56, 4059-4062.                                                     | 2.2 | 3         |
| 161 | Correlation between surface chemistry and magnetism in iron nanoparticles. Nanoscale Advances, 2021, 3, 4471-4481.                                                                                                         | 2.2 | 3         |
| 162 | Synthesis of NiFeOx nanocatalysts from metal–organic precursors for the oxygen evolution reaction. Dalton Transactions, 2022, 51, 11457-11466.                                                                             | 1.6 | 3         |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Organometallic synthesis of water-soluble ruthenium nanoparticles in the presence of sulfonated<br>diphosphines and cyclodextrins. Materials Research Society Symposia Proceedings, 2014, 1675, 219-225. | 0.1 | 2         |
| 164 | On the Use of Organometallic Chemistry Concepts for the Synthesis of Nanocatalysts. , 2016, , 41-79.                                                                                                     |     | 2         |
| 165 | One-pot organometallic synthesis of alumina-embedded Pd nanoparticles. Dalton Transactions, 2017, 46, 14318-14324.                                                                                       | 1.6 | 2         |
| 166 | Facile One-Pot Synthesis of Rhenium Nanoparticles. Materials Research Society Symposia Proceedings, 2014, 1675, 157-162.                                                                                 | 0.1 | 1         |
| 167 | Nanoparticles deposit location control on porous particles during dry impregnation in a fluidized bed. Powder Technology, 2014, 257, 198-202.                                                            | 2.1 | 1         |
| 168 | Water Transfer of Hydrophobic Nanoparticles: Principles and Methods. , 2014, , 1-26.                                                                                                                     |     | 0         |