
Onur Coban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6685542/publications.pdf Version: 2024-02-01

ONLID CORAN

#	Article	IF	CITATIONS
1	Laser-induced groove optimization for Al/CFRP adhesive joint strength. International Journal of Adhesion and Adhesives, 2021, 107, 102830.	1.4	20
2	Comparison of novel surface treatments of Al 2024 alloy for al/cfrp adhesive bonded joints. International Journal of Adhesion and Adhesives, 2020, 103, 102721.	1.4	18
3	Laser surface treatment of CFRP composites for a better adhesive bonding owing to the mechanical interlocking mechanism. Polymer Composites, 2019, 40, 3611-3622.	2.3	31
4	The Effect of CO ₂ Laserâ€Induced Microhole Formations on Adhesive Bonding Strength of CFRP/CFRP Joints. Polymer Composites, 2019, 40, 2891-2900.	2.3	14
5	Comparative study of volcanic particle and calcium carbonate filler materials in HDPE for thermal and mechanical properties. Polymer Composites, 2018, 39, E1900.	2.3	8
6	Damage characterization of three point bended honeycomb sandwich structures under different temperatures with cone beam computed tomography technique. Polymer Composites, 2018, 39, 46-54.	2.3	11
7	The influence of heat treatment process on mechanical properties of surface treated volcanic ash particles/polyphenylene sulfide composites. Polymer Composites, 2018, 39, 1604-1611.	2.3	5
8	Heat treatment effect on thermal and thermomechanical properties of polyphenylene sulfide composites reinforced with silaneâ€ŧreated volcanic ash particles. Polymer Composites, 2018, 39, 1612-1619.	2.3	6
9	Mechanical and thermal properties of volcanic particle filled PLA/PBAT composites. Polymer Composites, 2018, 39, E1500.	2.3	23
10	Experimental investigation of single and repeated impacts for repaired honeycomb sandwich structures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 23-30.	2.6	73
11	The scratch behavior of accelerated aged carbon fiber-reinforced epoxy matrix composite. Polymer Composites, 2016, 37, 3527-3534.	2.3	5
12	Damage characterization of repeatedly impacted glass fiber reinforced polyesterâ€armor steel composites with cone beam computed tomography technique. Polymer Composites, 2016, 37, 583-593.	2.3	5
13	The influence of different circular hole perforations on interlaminar shear strength of a novel fiber metal laminates. Polymer Composites, 2016, 37, 963-973.	2.3	9
14	Thermal, viscoelastic and mechanical properties' optimization of polyphenylene sulfide via optimal processing parameters using the Taguchi method. Journal of Applied Statistics, 2016, 43, 2661-2680.	0.6	4
15	Effect of mixed size particles reinforcing on the thermal and dynamic mechanical properties of <scp>A</scp> l ₂ <scp>O</scp> ₃ / <scp>PPS</scp> composites. Polymer Composites, 2016, 37, 3219-3227.	2.3	6
16	Scratch behavior of glass fiber reinforced polyester matrix composite after solid particle erosion. Polymer Composites, 2015, 36, 1958-1966.	2.3	7
17	The influence of low velocity repeated impacts on residual compressive properties of honeycomb sandwich structures. Composite Structures, 2015, 125, 425-433.	3.1	80
18	Heat treatment effect on erosion behavior of poly(methylmethacrylate) for optical transmittance efficiency. Applied Surface Science, 2014, 317, 405-413.	3.1	4

Onur Coban

#	Article	IF	CITATIONS
19	Possible use of volcanic ash as a filler in polyphenylene sulfide composites: Thermal, mechanical, and erosive wear properties. Polymer Composites, 2014, 35, 1826-1833.	2.3	18
20	Solid Particle Erosive Wear Behavior of Glass Mat Reinforced PPS Composites: Influence of Erodent Particle Size, Pressure, Particle Impingement Angle, and Velocity. Advances in Polymer Technology, 2013, 32, .	0.8	22
21	The effect of TIO2 filler content on the mechanical, thermal, and tribological properties of TiO2 /PPS composites. Polymer Composites, 2013, 34, 1591-1599.	2.3	13
22	Detecting Impact Damages in an Aramid/Glass Fiber Reinforced Hybrid Composite with Micro Tomography. Advanced Materials Research, 2012, 445, 9-14.	0.3	6
23	The influence of annealing on the crystallization and tribological behavior of MWNT/PEEK nanocomposites. Polymer Composites, 2011, 32, 1766-1771.	2.3	22
24	A review: Fibre metal laminates, background, bonding types and applied test methods. Materials & Design, 2011, 32, 3671-3685.	5.1	731
25	Effect of fiber orientation on viscoelastic properties of polymer matrix composites subjected to thermal cycles. Polymer Composites, 2010, 31, 411-416.	2.3	10
26	Instrumented indentation and scratch testing evaluation of tribological properties of tin-based bearing materials. Materials & Design, 2010, 31, 2707-2715.	5.1	22
27	Effect of Fiber Orientation on Scratch Resistance in Unidirectional Carbon-Fiber-Reinforced Polymer Matrix Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 1476-1490.	1.6	28
28	On the life time prediction of repeatedly impacted thermoplastic matrix composites. Materials & Design, 2009, 30, 145-153.	5.1	26
29	Fracture morphology and deformation characteristics of repeatedly impacted thermoplastic matrix composites. Materials & Design, 2009, 30, 628-634.	5.1	25
30	The Effects of Thermal Cycles on the Impact Fatigue Properties of Thermoplastic Matrix Composites. Applied Composite Materials, 2008, 15, 99-113.	1.3	9