Hideki Uosaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6685294/publications.pdf

Version: 2024-02-01

40 papers

2,229 citations

394421 19 h-index 395702 33 g-index

46 all docs

46 docs citations

46 times ranked

3407 citing authors

#	Article	IF	CITATIONS
1	Directed and Systematic Differentiation of Cardiovascular Cells From Mouse Induced Pluripotent Stem Cells. Circulation, 2008, 118, 498-506.	1.6	465
2	Efficient and Scalable Purification of Cardiomyocytes from Human Embryonic and Induced Pluripotent Stem Cells by VCAM1 Surface Expression. PLoS ONE, 2011, 6, e23657.	2.5	272
3	Non-canonical Notch signaling: emerging role and mechanism. Trends in Cell Biology, 2012, 22, 257-265.	7.9	198
4	Transcriptional Landscape of Cardiomyocyte Maturation. Cell Reports, 2015, 13, 1705-1716.	6.4	150
5	Pluripotent Stem Cell-Engineered Cell Sheets Reassembled with Defined Cardiovascular Populations Ameliorate Reduction in Infarct Heart Function Through Cardiomyocyte-Mediated Neovascularization. Stem Cells, 2012, 30, 1196-1205.	3.2	140
6	A Brief Review of Current Maturation Methods for Human Induced Pluripotent Stem Cells-Derived Cardiomyocytes. Frontiers in Cell and Developmental Biology, 2020, 8, 178.	3.7	134
7	Convergence of Notch and \hat{l}^2 -catenin signaling induces arterial fate in vascular progenitors. Journal of Cell Biology, 2010, 189, 325-338.	5.2	133
8	Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A. PLoS ONE, 2011, 6, e16734.	2.5	116
9	Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy. Cell Reports, 2017, 18, 571-582.	6.4	90
10	Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels and T-Type Calcium Channels Confer Automaticity of Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells, 2007, 25, 2712-2719.	3.2	67
11	Tbx6 Induces Nascent Mesoderm from Pluripotent Stem Cells and Temporally Controls Cardiac versus Somite Lineage Diversification. Cell Stem Cell, 2018, 23, 382-395.e5.	11.1	53
12	PGC1/PPAR drive cardiomyocyte maturation at single cell level via YAP1 and SF3B2. Nature Communications, 2021, 12, 1648.	12.8	49
13	Cyclosporin-A potently induces highly cardiogenic progenitors from embryonic stem cells. Biochemical and Biophysical Research Communications, 2009, 379, 115-120.	2.1	44
14	Identification of Chemicals Inducing Cardiomyocyte Proliferation in Developmental Stage–Specific Manner With Pluripotent Stem Cells. Circulation: Cardiovascular Genetics, 2013, 6, 624-633.	5.1	44
15	The cardiac pacemaker-specific channel Hcn4 is a direct transcriptional target of MEF2. Cardiovascular Research, 2009, 83, 682-687.	3.8	41
16	Comparative Gene Expression Analysis of Mouse and Human Cardiac Maturation. Genomics, Proteomics and Bioinformatics, 2016, 14, 207-215.	6.9	40
17	Precardiac deletion of Numb and Numblike reveals renewal of cardiac progenitors. ELife, 2014, 3, e02164.	6.0	36
18	Direct Contact with Endoderm-Like Cells Efficiently Induces Cardiac Progenitors from Mouse and Human Pluripotent Stem Cells. PLoS ONE, 2012, 7, e46413.	2.5	30

#	Article	IF	CITATIONS
19	A Novel Fluorescent Reporter System Identifies Laminin-511/521 as Potent Regulators of Cardiomyocyte Maturation. Scientific Reports, 2020, 10, 4249.	3.3	22
20	Production and rearing of germ-free X-SCID pigs. Experimental Animals, 2018, 67, 139-146.	1.1	16
21	Comparative Transcriptome Landscape of Mouse and Human Hearts. Frontiers in Cell and Developmental Biology, 2020, 8, 268.	3.7	16
22	Sympathetic Neurons Regulate Cardiomyocyte Maturation in Culture. Frontiers in Cell and Developmental Biology, 2022, 10, 850645.	3.7	12
23	Rapid manipulation of mitochondrial morphology in a living cell with iCMM. Cell Reports Methods, 2021, 1, 100052.	2.9	10
24	Prolonged Myocardial Regenerative Capacity in Neonatal Opossum. Circulation, 2022, 146, 125-139.	1.6	9
25	Non-viral exÂvivo genome-editing in mouse bona fide hematopoietic stem cells with CRISPR/Cas9. Molecular Therapy - Methods and Clinical Development, 2021, 20, 451-462.	4.1	7
26	Decreased Lamin B1 Levels Affect Gene Positioning and Expression in Postmitotic Neurons. Neuroscience Research, 2021, 173, 22-33.	1.9	6
27	Rapid and high-efficient generation of mutant mice using freeze-thawed embryos of the C57BL/6J strain. Journal of Neuroscience Methods, 2019, 317, 149-156.	2.5	5
28	Generation of novel <i>Il2rg</i> -knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9. Experimental Animals, 2020, 69, 189-198.	1.1	4
29	Use of Freeze-thawed Embryos for High-efficiency Production of Genetically Modified Mice. Journal of Visualized Experiments, 2020, , .	0.3	3
30	Disease Modeling of Mitochondrial Cardiomyopathy Using Patient-Specific Induced Pluripotent Stem Cells. Biology, 2021, 10, 981.	2.8	3
31	Noncanonical Notch signals have opposing roles during cardiac development. Biochemical and Biophysical Research Communications, 2021, 577, 12-16.	2.1	2
32	Chemicals Regulating Cardiomyocyte Differentiation. , 2011, , .		1
33	Generation of Efficient Knock-in Mouse and Human Pluripotent Stem Cells Using CRISPR-Cas9. Methods in Molecular Biology, 2021, 2320, 247-259.	0.9	1
34	Fetal sheep support the development of hematopoietic cells in vivo from human induced pluripotent stem cells. Experimental Hematology, 2021, 95, 46-57.e8.	0.4	1
35	Maturity of Pluripotent Stem Cell-Derived Cardiomyocytes and Future Perspectives for Regenerative Medicine., 2021,, 217-230.		1
36	Cross-Organ Transcriptomic Comparison Reveals Universal Factors During Maturation. Journal of Computational Biology, 2022, 29, 1031-1044.	1.6	1

#	Article	IF	CITATIONS
37	Sarcomere Shortening of Pluripotent Stem Cell-Derived Cardiomyocytes using Fluorescent-Tagged Sarcomere Proteins Journal of Visualized Experiments, 2021, , .	0.3	0
38	Convergence of Notch and \hat{l}^2 -catenin signaling induces arterial fate in vascular progenitors. Journal of Experimental Medicine, 2010, 207, i13-i13.	8.5	0
39	Directed and Systematic Differentiation of Cardiovascular Cells from Mouse and Human Pluripotent Stem Cells., 2013,, 84-96.		0
40	Abstract 19865: Transcriptional Landscape of Cardiomyocyte Maturation. Circulation, 2015, 132, .	1.6	0