

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6685193/publications.pdf Version: 2024-02-01

LE XIAO

#	Article	IF	CITATIONS
1	Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy, 2016, 19, 279-288.	16.0	341
2	Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 42796-42803.	8.0	129
3	A high performance direct carbon solid oxide fuel cell – A green pathway for brown coal utilization. Applied Energy, 2019, 248, 679-687.	10.1	74
4	Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels. Journal of Power Sources, 2014, 268, 508-516.	7.8	66
5	Characterization of symmetrical SrFe0.75Mo0.25O3â~î´ electrodes in direct carbon solid oxide fuel cells. Journal of Alloys and Compounds, 2016, 688, 939-945.	5.5	61
6	Recent progress in direct carbon solid oxide fuel cell: Advanced anode catalysts, diversified carbon fuels, and heat management. International Journal of Hydrogen Energy, 2021, 46, 4283-4300.	7.1	57
7	Effective and environmentally friendly recycling process designed for LiCoO2 cathode powders of spent Li-ion batteries using mixture of mild organic acids. Waste Management, 2018, 78, 51-57.	7.4	55
8	Electrochemical gas–electricity cogeneration through direct carbon solid oxide fuel cells. Journal of Power Sources, 2015, 277, 1-8.	7.8	52
9	Electrolysis of Carbon Dioxide in a Solid Oxide Electrolyzer with Silver-Gadolinium-Doped Ceria Cathode. Journal of the Electrochemical Society, 2015, 162, F397-F402.	2.9	47
10	A novel strategy for realizing high nitrogen doping in Fe ₃ C-embedded nitrogen and phosphorus-co-doped porous carbon nanowires: efficient oxygen reduction reaction catalysis in acidic electrolytes. Journal of Materials Chemistry A, 2019, 7, 17923-17936.	10.3	47
11	IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes as an efficient cathode catalyst for high-performance Li-O2 batteries. Ceramics International, 2017, 43, 14082-14089.	4.8	46
12	Behavior of strontium- and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells. Journal of Alloys and Compounds, 2014, 608, 272-277.	5.5	40
13	Effects of doping alumina on the electrical and sintering performances of yttrium-stabilized-zirconia. Solid State Ionics, 2016, 289, 28-34.	2.7	40
14	Enhanced electrokinetic remediation of lead- and cadmium-contaminated paddy soil by composite electrolyte of sodium chloride and citric acid. Journal of Soils and Sediments, 2018, 18, 1915-1924.	3.0	40
15	Combustion synthesized macroporous structure MFe 2 O 4 (M= Zn, Co) as anode materials with excellent electrochemical performance for lithium ion batteries. Journal of Alloys and Compounds, 2017, 699, 401-407.	5.5	38
16	Facile design of ultrafine CuFe2O4 nanocrystallines coupled porous carbon nanowires: Highly effective electrocatalysts for hydrogen peroxide reduction and the oxygen evolution reaction. Journal of Alloys and Compounds, 2019, 809, 151766.	5.5	36
17	An investigation on the kinetics of direct carbon solid oxide fuel cells. Journal of Solid State Electrochemistry, 2016, 20, 2207-2216.	2.5	34
18	New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation. Applied Energy, 2019, 256, 113910.	10.1	24

JIE ΧΙΑΟ

#	Article	IF	CITATIONS
19	Tiny Ni Nanoparticles Embedded in Boron- and Nitrogen-Codoped Porous Carbon Nanowires for High-Efficiency Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 24447-24461.	8.0	24
20	Effect of pre-calcined ceramic powders at different temperatures on Ni-YSZ anode-supported SOFC cell/stack by low pressure injection molding. Ceramics International, 2019, 45, 20066-20072.	4.8	23
21	Restoring Surface Defect Crystal of Li-Lacking LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Material Particles toward More Efficient Recycling of Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 16997-17006.	6.7	23
22	Co-precipitation synthesis of alumina doped yttria stabilized zirconia. Journal of Alloys and Compounds, 2018, 731, 1080-1088.	5.5	22
23	In-situ catalytic gasification of kelp-derived biochar as a fuel for direct carbon solid oxide fuel cells. Journal of Alloys and Compounds, 2021, 865, 158922.	5.5	22
24	Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack. Energy, 2021, 227, 120456.	8.8	22
25	Manganese Oxide/Iron Carbide Encapsulated in Nitrogen and Boron Codoped Carbon Nanowire Networks as Accelerated Alkaline Hydrogen Evolution and Oxygen Reduction Bifunctional Electrocatalysts. ACS Applied Materials & Interfaces, 2022, 14, 13280-13294.	8.0	22
26	A novel low-pressure injection molding technique for fabricating anode supported solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 5105-5112.	7.1	21
27	TiO2–MoS2 hybrid nano composites with 3D network architecture as binder-free flexible electrodes for lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2017, 28, 9519-9527.	2.2	21
28	A Microtubular Direct Carbon Solid Oxide Fuel Cell Operated on the Biochar Derived from Pepper Straw. Energy Technology, 2020, 8, 1901077.	3.8	18
29	Facile synthesis of cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotubes for use as a highly efficient bifunctional catalyst in rechargeable Zn-Air batteries. Journal of Alloys and Compounds, 2020, 842, 155791.	5.5	16
30	A novel Chinese parasol leaf biochar fuelled direct carbon solid oxide fuel cell for high performance electricity generation. International Journal of Hydrogen Energy, 2022, 47, 1172-1182.	7.1	16
31	Performance improvement of a direct carbon solid oxide fuel cell via strontium-catalyzed carbon gasification. International Journal of Hydrogen Energy, 2020, 45, 23368-23377.	7.1	14
32	A novel Boudouard reaction catalyst derived from strontium slag for enhanced performance of direct carbon solid oxide fuel cells. Journal of Alloys and Compounds, 2022, 895, 162643.	5.5	13
33	Highly efficient utilization of industrial barium slag for carbon gasification in direct carbon solid oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46, 37029-37038.	7.1	8
34	Comparative Study of Yttria-Stabilized Zirconia Synthesis by Co-Precipitation and Solvothermal Methods. Jom, 2019, 71, 3806-3813.	1.9	7
35	Highly efficient direct carbon solid oxide fuel cells operated with camellia oleifera biomass. Electrochimica Acta, 2022, 423, 140594.	5.2	6
36	Flower-like three-dimensional bifunctional cathode catalyst for high-performance Li–O2 batteries: ZIF-67@3D-N/rGO. Ceramics International, 2022, 48, 5601-5608.	4.8	5

#	Article	IF	CITATIONS
37	Low Remanent Polarization for High Energy Density by Poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Materials, 2019, 48, 8172-8180.	Tf 50 747 2.2	Td (fluoride-c 4
38	Blends based P(VDF-CTFE) with quenching in ice water and PLZST modification with high energy storage performance. Polymer, 2020, 202, 122727.	3.8	4
39	Electrochemical Performance of Cone-Shaped Tubular Anode Supported Solid Oxide Fuel Cells Fabricated by Low-Pressure Injection Moulding Technique. ECS Transactions, 2011, 35, 609-614.	0.5	2