Jiantang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6684663/publications.pdf

Version: 2024-02-01

623574 677027 22 753 14 22 citations h-index g-index papers 22 22 22 899 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Designing Multicomponent Metal–Organic Frameworks with Hierarchical Structure-Mimicking Distribution for High CO ₂ Capture Performance. Inorganic Chemistry, 2022, 61, 7663-7670.	1.9	7
2	Inquiry for the multifunctional design of metal–organic frameworks: in situ equipping additional open metal sites (OMSs) inducing high CO2 capture/conversion abilities. Materials Chemistry Frontiers, 2021, 5, 1398-1404.	3.2	10
3	The multifunctional design of metal–organic framework by applying linker desymmetrization strategy: synergistic catalysis for high CO ₂ -epoxide conversion. Inorganic Chemistry Frontiers, 2021, 8, 4990-4997.	3.0	12
4	Contiguous layer based metal–organic framework with conjugated π-electron ligand for high iodine capture. Dalton Transactions, 2021, 50, 13096-13102.	1.6	16
5	PEEK composites with polyimide sizing SCF as reinforcement: Preparation, characterization, and mechanical properties. High Performance Polymers, 2020, 32, 383-393.	0.8	12
6	Quest for Zeoliteâ€like Supramolecular Assemblies: Selfâ€Assembly of Metal–Organic Squares via Directed Hydrogen Bonding. Angewandte Chemie, 2020, 132, 19827-19830.	1.6	4
7	Recent Progress on Microfine Design of Metal–Organic Frameworks: Structure Regulation and Gas Sorption and Separation. Advanced Materials, 2020, 32, e2002563.	11.1	160
8	Quest for Zeoliteâ€like Supramolecular Assemblies: Selfâ€Assembly of Metal–Organic Squares via Directed Hydrogen Bonding. Angewandte Chemie - International Edition, 2020, 59, 19659-19662.	7.2	18
9	Two unique copper cluster-based metal–organic frameworks with high performance for CO ₂ adsorption and separation. Inorganic Chemistry Frontiers, 2019, 6, 556-561.	3.0	23
10	A Stable Mesoporous Zr-Based Metal Organic Framework for Highly Efficient CO ₂ Conversion. Inorganic Chemistry, 2019, 58, 7480-7487.	1.9	51
11	Two Cu _x l _y -based copper–organic frameworks with multiple secondary building units (SBUs): structure, gas adsorption and impressive ability of I ₂ sorption and release. Inorganic Chemistry Frontiers, 2019, 6, 1261-1266.	3.0	18
12	Supramolecular interactions induced distortion of BTB ligands: breaking convention to reproduce an unusual (3,4,4)-connected MOF topology. Dalton Transactions, 2019, 48, 5511-5514.	1.6	4
13	A three-dimensional Cu-MOF with strong Ï∈-Ï€ interactions exhibiting high water and chemical stability. Inorganic Chemistry Communication, 2019, 99, 108-112.	1.8	7
14	Indium–Organic Frameworks Based on Dual Secondary Building Units Featuring Halogen-Decorated Channels for Highly Effective CO ₂ Fixation. Chemistry of Materials, 2019, 31, 1084-1091.	3.2	142
15	Two Metal–Organic Frameworks with Structural Varieties Derived from ⟨i⟩cis–trans⟨i⟩ Isomerism Nodes and Effective Detection of Nitroaromatic Explosives. Crystal Growth and Design, 2018, 18, 1857-1863.	1.4	44
16	A water stable microporous metal–organic framework based on rod SBUs: synthesis, structure and adsorption properties. CrystEngComm, 2018, 20, 2169-2174.	1.3	8
17	A Microporous Heterovalent Copper–Organic Framework Based on [Cu ₂ sub>4 Secondary [Cu ₂ Sub>4 Secondary Building Units: High Performance for CO ₂ Adsorption and Separation and Iodine Sorption and Release. Crystal Growth and Design. 2018. 18. 5449-5455.	1.4	29
18	Mesoporous Hexanuclear Copper Cluster-Based Metal–Organic Framework with Highly Selective Adsorption of Gas and Organic Dye Molecules. ACS Applied Materials & Interfaces, 2018, 10, 31233-31239.	4.0	50

#	Article	IF	CITATION
19	Two Finite Binuclear [M ₂ (μ ₂ -OH)(COO) ₂] (M = Co, Ni) Based Highly Porous Metal–Organic Frameworks with High Performance for Gas Sorption and Separation. Inorganic Chemistry, 2017, 56, 4141-4147.	1.9	57
20	Lewis basic site (LBS)-functionalized zeolite-like supramolecular assemblies (ZSAs) with high CO ₂ uptake performance and highly selective CO ₂ /CH ₄ separation. Journal of Materials Chemistry A, 2017, 5, 21429-21434.	5.2	21
21	Self-assembly of Homochiral Porous Supramolecular Organic Frameworks with Significant CO ₂ Capture and CO ₂ /N ₂ Selectivity. Crystal Growth and Design, 2017, 17, 6653-6659.	1.4	38
22	Three novel bismuth-based coordination polymers: Synthesis, structure and luminescent properties. Inorganic Chemistry Communication, 2017, 85, 70-73.	1.8	22