
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/668456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell alignment modulated by surface nano-topography – Roles of cell-matrix and cell-cell interactions. Acta Biomaterialia, 2022, 142, 149-159.	4.1	15
2	Microfluidics for understanding model organisms. Nature Communications, 2022, 13, .	5.8	15
3	Freeform 3D Ice Printing (3Dâ€ICE) at the Micro Scale. Advanced Science, 2022, 9, .	5.6	5
4	Toward sustainable desalination using food waste: capacitive desalination with bread-derived electrodes. RSC Advances, 2021, 11, 9628-9637.	1.7	6
5	3D Collagen Vascular Tumor-on-a-Chip Mimetics for Dynamic Combinatorial Drug Screening. Molecular Cancer Therapeutics, 2021, 20, 1210-1219.	1.9	6
6	Fe-Doped Copolymer-Templated Nitrogen-Rich Carbon as a PGM-Free Fuel Cell Catalyst. ACS Applied Energy Materials, 2021, 4, 9653-9663.	2.5	5
7	Decidual Vasculopathy Identification in Whole Slide Images Using Multiresolution Hierarchical Convolutional Neural Networks. American Journal of Pathology, 2020, 190, 2111-2122.	1.9	17
8	Hierarchical Machine Learning for High-Fidelity 3D Printed Biopolymers. ACS Biomaterials Science and Engineering, 2020, 6, 7021-7031.	2.6	44
9	Probing coordinated co-culture cancer related motility through differential micro-compartmentalized elastic substrates. Scientific Reports, 2020, 10, 18519.	1.6	3
10	Toward Vasculature in Skeletal Muscle-on-a-Chip through Thermo-Responsive Sacrificial Templates. Micromachines, 2020, 11, 907.	1.4	16
11	3D In Vitro Neuron on a Chip for Probing Calcium Mechanostimulation. Advanced Biology, 2020, 4, e200080.	3.0	3
12	Written in Blood: Applying Shape Grammars to Retinal Vasculatures. Translational Vision Science and Technology, 2020, 9, 36.	1.1	3
13	Polycarbonate Heat Molding for Soft Lithography. Small, 2020, 16, e2000241.	5.2	13
14	Chemotactic Responses of Jurkat Cells in Microfluidic Flow-Free Gradient Chambers. Micromachines, 2020, 11, 384.	1.4	6
15	A biosensing soft robot: Autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Science Robotics, 2019, 4, .	9.9	85
16	High-throughput mechanotransduction in <i>Drosophila</i> embryos with mesofluidics. Lab on A Chip, 2019, 19, 1141-1152.	3.1	18
17	Intact mangrove root electrodes for desalination. RSC Advances, 2019, 9, 4735-4743.	1.7	6
18	Bio-inspired soft robotics: Material selection, actuation, and design. Extreme Mechanics Letters, 2018, 22, 51-59.	2.0	247

2

#	Article	IF	CITATIONS
19	Efficient probabilistic grammar induction for design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2018, 32, 177-188.	0.7	7
20	Biomimetic scaffolds with three-dimensional undulated microtopographies. Biomaterials, 2017, 128, 109-120.	5.7	33
21	Drop casting of stiffness gradients for chip integration into stretchable substrates. Journal of Micromechanics and Microengineering, 2017, 27, 045018.	1.5	10
22	Robust mechanobiological behavior emerges in heterogeneous myosin systems. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8147-E8154.	3.3	5
23	How can we predict cellular mechanosensation?. Physics of Life Reviews, 2017, 22-23, 120-122.	1.5	3
24	2D and 3D Mechanobiology in Human and Nonhuman Systems. ACS Applied Materials & Interfaces, 2016, 8, 21869-21882.	4.0	10
25	The D3 Methodology: Bridging Science and Design for Bio-Based Product Development. Journal of Mechanical Design, Transactions of the ASME, 2016, 138, .	1.7	10
26	Material Gradients in Stretchable Substrates toward Integrated Electronic Functionality. Advanced Materials, 2016, 28, 3584-3591.	11.1	52
27	Improving human understanding and design of complex multi-level systems with animation and parametric relationship supports. Design Science, 2015, 1, .	1.1	9
28	Structurally Governed Cell Mechanotransduction through Multiscale Modeling. Scientific Reports, 2015, 5, 8622.	1.6	10
29	The D3 Science-to-Design Methodology: Automated and Cognitive-Based Processes for Discovering, Describing, and Designing Complex Nanomechanical Biosystems. , 2015, , .		4
30	Cellular force signal integration through vector logic gates. Journal of Biomechanics, 2015, 48, 613-620.	0.9	5
31	Sudden motility reversal indicates sensing of magnetic field gradients in <i>Magnetospirillum magneticum</i> AMB-1 strain. ISME Journal, 2015, 9, 1399-1409.	4.4	20
32	Emergent Systems Energy Laws for Predicting Myosin Ensemble Processivity. PLoS Computational Biology, 2015, 11, e1004177.	1.5	13
33	The role of mechanics in biological and bio-inspired systems. Nature Communications, 2015, 6, 7418.	5.8	170
34	3D bio-etching of a complex composite-like embryonic tissue. Lab on A Chip, 2015, 15, 3293-3299.	3.1	4
35	Controlled surface topography regulates collective 3D migration by epithelial–mesenchymal composite embryonic tissues. Biomaterials, 2015, 58, 1-9.	5.7	21
36	Synergistic human-agent methods for deriving effective search strategies: the case of nanoscale design. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2015, 26, 145-169.	1.2	16

#	Article	IF	CITATIONS
37	Beyond Disease, How Biomedical Engineering Can Improve Global Health. Science Translational Medicine, 2014, 6, 266fs48.	5.8	10
38	Probing Collective Migration of a Complex Multi-Cellular Embryonic Tissue Through Novel 3D Bioetching. Biophysical Journal, 2014, 106, 172a.	0.2	0
39	Engineering living systems on chips: from cells to human on chips. Microfluidics and Nanofluidics, 2014, 16, 907-920.	1.0	35
40	Mechanochemical actuators of embryonic epithelial contractility. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14366-14371.	3.3	34
41	Reply to 'Complexity of molecular crowding in cell-free enzymatic reaction networks'. Nature Nanotechnology, 2014, 9, 407-408.	15.6	0
42	Using Atomic Force Microscopy to Probe Microalgal Response. Biophysical Journal, 2014, 106, 390a.	0.2	0
43	Integrating Synthetic Cells and Flexible Electronics for the Control of Bio-Opto-Fluidic Materials. Biophysical Journal, 2014, 106, 617a-618a.	0.2	2
44	Controlling Magnetotactic Bacteria through an Integrated Nanofabricated Metallic Island and Optical Microscope Approach. Scientific Reports, 2014, 4, 4104.	1.6	8
45	Molecular crowding shapes gene expression in synthetic cellular nanosystems. Nature Nanotechnology, 2013, 8, 602-608.	15.6	215
46	Topological Control of Cell Sheet Migration by the 3D Microenvironment. Biophysical Journal, 2013, 104, 147a.	0.2	1
47	Understanding Cellular Energy Harvesting through Piezoelectric Polymers with Cellular Interfaces. Biophysical Journal, 2013, 104, 530a-531a.	0.2	0
48	Analyzing the Early Tissue Mechanical Response to Chemokine Signaling using Microfluidics. Biophysical Journal, 2013, 104, 320a.	0.2	0
49	Controlled Envelopment of Magnetic Particles within Liposomes using a Custom-Built Multi-Layer Magnetic Microfluidic Device. Biophysical Journal, 2013, 104, 546a.	0.2	0
50	Design of Complex Biologically Based Nanoscale Systems Using Multi-Agent Simulations and Structure–Behavior–Function Representations. Journal of Mechanical Design, Transactions of the ASME, 2013, 135, .	1.7	11
51	Modeling Mechanotransduction Signaling through Actin Filament Network Deformation Linked to Biochemical Response. Biophysical Journal, 2013, 104, 317a-318a.	0.2	1
52	Exploring the Mechanics of Magnetically Driven Motility in Magnetotactic Bacteria through Genetic Regulation. Biophysical Journal, 2013, 104, 640a-641a.	0.2	0
53	Probing Why Nature may Favor Heterogeneous Myosin Systems through Single Molecule and Systems Level Approaches. Biophysical Journal, 2013, 104, 496a.	0.2	0
54	Understanding the Mechanical Properties of Microalgae using Atomic Force Microscopy. Biophysical Journal, 2013, 104, 513a.	0.2	1

#	Article	IF	CITATIONS
55	Probing the dynamic responses of individual actin filaments under fluidic mechanical stimulation via microfluidics. Applied Physics Letters, 2013, 102, 193704.	1.5	1
56	Modeling and Control of a Nonlinear Mechanism for High Performance Microfluidic Systems. IEEE Transactions on Control Systems Technology, 2013, 21, 203-211.	3.2	10
57	Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid. Applied Physics Letters, 2012, 101, 063701.	1.5	12
58	Cells gain traction in 3D. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11060-11061.	3.3	6
59	Design of Complex Nano-Scale Systems Using Multi-Agent Simulations and Structure-Behavior-Function Representations. , 2012, , .		1
60	Calcium signaling is gated by a mechanical threshold in three-dimensional environments. Scientific Reports, 2012, 2, 554.	1.6	9
61	Frontiers of optofluidics in synthetic biology. Lab on A Chip, 2012, 12, 3654.	3.1	12
62	Controlling Embryonic Cell Sheet Migration using Microfluidics. Biophysical Journal, 2012, 102, 417a.	0.2	0
63	Magnetically-Induced Genetic Response of Magnetotactic Bacteria. Biophysical Journal, 2012, 102, 731a.	0.2	0
64	Mechanical Loading of Stem Cells for Improvement of Transplantation Outcome in a Model of Acute Myocardial Infarction: The Role of Loading History. Tissue Engineering - Part A, 2012, 18, 1101-1108.	1.6	25
65	Disruptive Microfluidics: From Life Sciences to World Health to Energy. Disruptive Science and Technology, 2012, 1, 41-53.	1.0	10
66	Three-dimensional microfiber devices that mimic physiological environments to probe cell mechanics and signaling. Lab on A Chip, 2012, 12, 1775.	3.1	15
67	Engineering Magnetic Nanomaterial Production in Magnetotactic Bacteria Through Gene Regulation. , 2012, , .		0
68	Programmed Biologically Inspired Synthetic Templating of Multifunctional Nanoarchitectures for Small‧cale Reactions. European Journal of Inorganic Chemistry, 2012, 2012, 5405-5410.	1.0	1
69	Three-Dimensional Stochastic Off-Lattice Model of Binding Chemistry in Crowded Environments. PLoS ONE, 2012, 7, e30131.	1.1	3
70	Sensing of Local, Highly Concentrated Magnetic Field Gradients in Magnetotactic Bacteria Induces Motility Reversal. , 2012, , .		0
71	Localized neurite outgrowth sensing via substrates with alternative rigidities. Soft Matter, 2011, 7, 9871.	1.2	22
72	Investigating Circular Dorsal Ruffles through Varying Substrate Stiffness and Mathematical Modeling. Biophysical Journal, 2011, 101, 2122-2130.	0.2	31

#	Article	IF	CITATIONS
73	How Do Control-Based Approaches Enter into Biology?. Annual Review of Biomedical Engineering, 2011, 13, 369-396.	5.7	48
74	Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab on A Chip, 2011, 11, 1550.	3.1	127
75	Dynamic control of 3D chemical profiles with a single 2D microfluidic platform. Lab on A Chip, 2011, 11, 2182.	3.1	12
76	Imposing Local Magnetic Fields to Control Magnetotactic Bacteria Through Combining Microfabrication and Magnetism. Biophysical Journal, 2011, 100, 514a.	0.2	0
77	Detection of Dynamic Spatiotemporal Response to Periodic Chemical Stimulation in a Xenopus Embryonic Tissue. PLoS ONE, 2011, 6, e14624.	1.1	35
78	Unified regression model of binding equilibria in crowded environments. Scientific Reports, 2011, 1, 97.	1.6	7
79	Maskless fabrication of small-scale structures through controlling phase interactions. Applied Physics A: Materials Science and Processing, 2011, 102, 185-188.	1.1	1
80	Microbial electricity generation via microfluidic flow control. Biotechnology and Bioengineering, 2011, 108, 2061-2069.	1.7	62
81	Response of an actin filament network model under cyclic stretching through a coarse grained Monte Carlo approach. Journal of Theoretical Biology, 2011, 274, 109-119.	0.8	39
82	Localized bimodal response of neurite extensions and structural proteins in dorsal-root ganglion neurons with controlled polydimethylsiloxane substrate stiffness. Journal of Biomechanics, 2011, 44, 856-862.	0.9	35
83	Modulating material interfaces through biologically-inspired intermediates. Applied Physics Letters, 2011, 99, 233701.	1.5	4
84	Bioinspirations: Cell-Inspired Small-Scale Systems for Enabling Studies in Experimental Biomechanics. Integrative and Comparative Biology, 2011, 51, 133-141.	0.9	2
85	Automated high-throughput screening of carbon nanotube-based bio-nanocomposites for bone cement applications. Pure and Applied Chemistry, 2011, 83, 2063-2069.	0.9	1
86	Mechanical stretch and shear flow induced reorganization and recruitment of fibronectin in fibroblasts. Scientific Reports, 2011, 1, 147.	1.6	40
87	A Design Exploration of Genetically Engineered Myosin Motors. , 2011, , .		1
88	Probing Cell Structure Responses Through a Shear and Stretching Mechanical Stimulation Technique. Cell Biochemistry and Biophysics, 2010, 56, 115-124.	0.9	50
89	Probing localized neural mechanotransduction through surface-modified elastomeric matrices and electrophysiology. Nature Protocols, 2010, 5, 714-724.	5.5	44
90	Nonlinear modeling and control of a mechanically coupled variable resistance and squeeze pump for pressure regulation in microfluidics. , 2010, , .		1

#	Article	IF	CITATIONS
91	Nonlinear Modeling for Interface Control in a Three-Lane Microfluidic Channel. , 2010, , .		0
92	Control of Extracellular Matrix Organization through Coupled Mechanical and Chemical Inputs. Biophysical Journal, 2010, 98, 732a.	0.2	0
93	Micropatterning Biomanufactured Single-Domain Nanoparticles using Self-Assembly to form Artificial Magnetosome Chains. Biophysical Journal, 2010, 98, 730a.	0.2	0
94	Thermally Tunable Polymer Microlenses for Biological Imaging. Journal of Microelectromechanical Systems, 2010, 19, 1444-1449.	1.7	8
95	Probing the Response of Structural Proteins To Mechanical Stimulation in Neuroblasts. Biophysical Journal, 2010, 98, 19a.	0.2	0
96	Simulation Study of Binding Chemistry in Crowded Conditions Using Two- and Three-Dimensional Stochastic Off-Lattice Models. Biophysical Journal, 2010, 98, 58a.	0.2	0
97	Three-Dimensional Chemical Profile Manipulation Using Two-Dimensional Autonomous Microfluidic Control. Journal of the American Chemical Society, 2010, 132, 1339-1347.	6.6	13
98	Integrated biomimetic carbon nanotube composites for in vivo systems. Nanoscale, 2010, 2, 2855.	2.8	35
99	Probing Dynamic Responses of the Extracellular Matrix to Coupled Mechanical and Chemical Inputs. , 2010, , .		0
100	Probing Nonlinear Cellular Responses to Integrated Mechanical Signals Through Examining Cell Alignment. , 2010, , .		0
101	Understanding Sensory Nerve Mechanotransduction through Localized Elastomeric Matrix Control. PLoS ONE, 2009, 4, e4293.	1.1	61
102	Parameter effects on binding chemistry in crowded media using a two-dimensional stochastic off-lattice model. Physical Review E, 2009, 80, 041918.	0.8	4
103	Core-shell CdSe/ZnS Quantum dots as a dual mode spatiotemporal microscopy probe for understanding cellular responses. Proceedings of SPIE, 2009, , .	0.8	1
104	Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22102-22107.	3.3	109
105	Dissecting the Molecular Basis of the Mechanics of Living Cells. Experimental Mechanics, 2009, 49, 11-23.	1.1	20
106	Spatiotemporal Control of Apical and Basal Living Subcellular Chemical Environments Through Vertical Phase Separation. Small, 2009, 5, 1984-1989.	5.2	5
107	Probing cell structure by controlling the mechanical environment with cell–substrate interactions. Journal of Biomechanics, 2009, 42, 187-192.	0.9	55
108	Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells. Biomaterials, 2009, 30, 3136-3142.	5.7	93

#	Article	IF	CITATIONS
109	Structure and dynamics of single DNA molecules manipulated by magnetic tweezers and or flow. Methods, 2009, 47, 214-222.	1.9	16
110	Fabricating small-scale, curved, polymeric structures with convex and concave menisci through interfacial free energy equilibrium. Lab on A Chip, 2009, 9, 3306.	3.1	16
111	Modulation of fluidic resistance and capacitance for long-term, high-speed feedback control of a microfluidic interface. Lab on A Chip, 2009, 9, 2603.	3.1	41
112	Dynamics of individual polymers using microfluidic based microcurvilinear flow. Lab on A Chip, 2009, 9, 2339.	3.1	6
113	Probing Cellular Dynamics with a Chemical Signal Generator. PLoS ONE, 2009, 4, e4847.	1.1	53
114	Stem Cell Transplantation for Cardiac Repair is Improved by Mechanical Preconditioning. FASEB Journal, 2009, 23, 362.9.	0.2	0
115	Effects of Mechanical Strain on Structural and Actin-Binding Proteins in Neuroblasts. , 2009, , .		0
116	Examining Adaptive Extracellular Responses of Living Cells Under Mechanical Stimulation Through Probing Fibronectin Response. , 2009, , .		0
117	Controlling the mechanics and nanotopography of biocompatible scaffolds through dielectrophoresis with carbon nanotubes. Electrophoresis, 2008, 29, 3123-3127.	1.3	6
118	Structural Phase Coexistence under Reversible Thermal Control. Advanced Materials, 2008, 20, 953-958.	11.1	5
119	Artificial cells: building bioinspired systems using small-scale biology. Trends in Biotechnology, 2008, 26, 14-20.	4.9	91
120	Spatiotemporal Response of Living Cell Structures in <i>Dictyostelium discoideum</i> with Semiconductor Quantum Dots. Nano Letters, 2008, 8, 1303-1308.	4.5	16
121	Investigation of Calcium Mechanotransduction by Quasi 3-D Microfiber Mechanical Stimulation of Cells. , 2008, , .		0
122	Creating cellular and molecular patterns via gravitational force with liquid droplets. Applied Physics Letters, 2008, 93, .	1.5	6
123	Thermally tunable polymer microlenses. Applied Physics Letters, 2008, 92, 251904.	1.5	19
124	Stochastic off-lattice modeling of molecular self-assembly in crowded environments by Green's function reaction dynamics. Physical Review E, 2008, 78, 031911.	0.8	17
125	Photochemical three-dimensional fabrication with nanopore membranes for biological applications. , 2008, , .		1
126	Controlled Waveform Chemical Stimulus of Cellular Subdomains for System Identification. , 2008, , .		0

8

#	Article	IF	CITATIONS
127	Understanding Biological Structures Through Exploring the Mechanical Response of Cell-Like Systems. , 2008, , .		0
128	Thermally Adjustable Microlenses for Biological Imaging. , 2007, , .		0
129	Modeling molecular interactions to understand spatial crowding effects on heterodimer formations. Physical Review E, 2007, 76, 041904.	0.8	6
130	Subfeature patterning of organic and inorganic materials using robotic assembly. Journal of Materials Research, 2007, 22, 1601-1608.	1.2	11
131	Pressure-driven spatiotemporal control of the laminar flow interface in a microfluidic network. Lab on A Chip, 2007, 7, 647.	3.1	56
132	Chemically Encapsulated Structural Elements for Probing the Mechanical Responses of Biologically Inspired Systems. Langmuir, 2007, 23, 8129-8134.	1.6	19
133	Creating Ordered Small-Scale Biologically-Based Rods through Force-Controlled Stamping. Journal of the American Chemical Society, 2007, 129, 9546-9547.	6.6	7
134	Controlled geometry fabrication of polydimethylsiloxane nanofibers for biomimetics. Journal of Applied Polymer Science, 2007, 105, 2549-2552.	1.3	3
135	Using Lessons from Cellular and Molecular Structures for Future Materials. Advanced Materials, 2007, 19, 3761-3770.	11.1	43
136	Towards an in vivo biologically inspired nanofactory. Nature Nanotechnology, 2007, 2, 3-7.	15.6	172
137	Computational models of molecular self-organization in cellular environments. Cell Biochemistry and Biophysics, 2007, 48, 16-31.	0.9	12
138	Stretch-Activated Calcium Signal Propagation Following Mechanical Stimulation of Focal Adhesions. , 2007, , .		0
139	Effects of Local Mechanical Stimulation on Cellular Behavior. , 2007, , .		0
140	Micropatterning polyvinyl alcohol as a biomimetic material through soft lithography with cell culture. Molecular BioSystems, 2006, 2, 299.	2.9	32
141	Force-Controlled Inorganic Crystallization Lithography. Journal of the American Chemical Society, 2006, 128, 12080-12081.	6.6	7
142	Evaluating Spatial Constraints in Cellular Assembly Processes Using a Monte Carlo Approach. Cell Biochemistry and Biophysics, 2006, 45, 195-202.	0.9	8
143	Nanoscale Intracellular Organization and Functional Architecture Mediating Cellular Behavior. Annals of Biomedical Engineering, 2006, 34, 102-113.	1.3	25
144	Microdrilling for fabricating micrometer-scale holes in soft matter. Applied Physics A: Materials Science and Processing, 2006, 85, 195-198.	1.1	2

#	Article	IF	CITATIONS
145	Polymeric microlenses for real-time aqueous and nonaqueous organic imaging. Applied Physics Letters, 2006, 88, 053902.	1.5	9
146	Three-dimensional molecular phase separation and flow patterns with novel multilevel fluidics. MCB Molecular and Cellular Biomechanics, 2006, 3, 69-77.	0.3	1
147	Optical fabrication of three-dimensional polymeric microstructures. Applied Physics Letters, 2005, 87, 164104.	1.5	4
148	Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor. Mcb Mechanics and Chemistry of Biosystems, 2005, 2, 17-25.	0.3	36
149	Integrated Lithographic Membranes and Surface Adhesion Chemistry for Three-Dimensional Cellular Stimulation. Langmuir, 2004, 20, 11552-11556.	1.6	31
150	Understanding actin organization in cell structure through lattice based Monte Carlo simulations. Mcb Mechanics and Chemistry of Biosystems, 2004, 1, 123-31.	0.3	5
151	Selective Chemical Treatment of Cellular Microdomains Using Multiple Laminar Streams. Chemistry and Biology, 2003, 10, 123-130.	6.2	192
152	Linking Molecular to Cellular Biomechanics With Nano- and Micro-Technology. , 2003, , 363.		0
153	Use of Flexible Materials with a Novel Pressure Driven Equibiaxial Cell Stretching Device for Mechanical Stimulation of Single Mammalian Cells. Materials Research Society Symposia Proceedings, 2003, 773, 561.	0.1	0
154	Use of micropatterned adhesive surfaces for control of cell behavior. Methods in Cell Biology, 2002, 69, 385-401.	0.5	31
155	Controlling Mammalian Cell Spreading and Cytoskeletal Arrangement with Conveniently Fabricated Continuous Wavy Features on Poly(dimethylsiloxane). Langmuir, 2002, 18, 3273-3280.	1.6	185
156	Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO Journal, 2002, 21, 4070-4080.	3.5	146
157	Subcellular positioning of small molecules. Nature, 2001, 411, 1016-1016.	13.7	496
158	Apoptosis of Syncytia Induced by the HIV-1–Envelope Glycoprotein Complex: Influence of Cell Shape and Size. Experimental Cell Research, 2000, 261, 119-126.	1.2	25
159	Dynamics of individual flexible polymers in a shear flow. Nature, 1999, 399, 564-566.	13.7	202
160	A platform for building PIC applications for control and instrumentation. , 0, , .		0
161	Cell Alignment Modulated by Surface Nano-Topography–ÂRoles of Cell-Matrix and Cell-Cell Interactions. SSRN Electronic Journal, 0, , .	0.4	0