List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6684407/publications.pdf Version: 2024-02-01

		26610	43868
193	10,141	56	91
papers	citations	h-index	g-index
197	197	197	11221
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. Journal of the American Chemical Society, 2020, 142, 20134-20142.	6.6	414
2	Plasmonic Light-Harvesting Devices over the Whole Visible Spectrum. Nano Letters, 2010, 10, 2574-2579.	4.5	345
3	Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells. Joule, 2020, 4, 1248-1262.	11.7	260
4	Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nature Photonics, 2021, 15, 681-689.	15.6	255
5	Band-Gap Modulation in Single Bi ³⁺ -Doped Yttrium–Scandium–Niobium Vanadates for Color Tuning over the Whole Visible Spectrum. Chemistry of Materials, 2016, 28, 2692-2703.	3.2	246
6	Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light: Science and Applications, 2020, 9, 190.	7.7	239
7	Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nature Communications, 2012, 3, 1108.	5.8	215
8	Role of Defects in the Phase Transition of VO ₂ Nanoparticles Probed by Plasmon Resonance Spectroscopy. Nano Letters, 2012, 12, 780-786.	4.5	196
9	Creating an Ecoâ€Friendly Building Coating with Smart Subambient Radiative Cooling. Advanced Materials, 2020, 32, e1906751.	11.1	196
10	Hierarchical Porous Plasmonic Metamaterials for Reproducible Ultrasensitive Surfaceâ€Enhanced Raman Spectroscopy. Advanced Materials, 2015, 27, 1090-1096.	11.1	193
11	Revealing Plasmonic Gap Modes in Particle-on-Film Systems Using Dark-Field Spectroscopy. ACS Nano, 2012, 6, 1380-1386.	7.3	167
12	Nonlinear optics in plasmonic nanostructures. Journal of Optics (United Kingdom), 2018, 20, 083001.	1.0	160
13	Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2:Yb3+,Er3+ hybrid core–shell–satellite nanostructures. Light: Science and Applications, 2017, 6, e16217-e16217.	7.7	155
14	Subgroup Decomposition of Plasmonic Resonances in Hybrid Oligomers: Modeling the Resonance Lineshape. Nano Letters, 2012, 12, 2101-2106.	4.5	144
15	Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics, 2018, 7, 1865-1889.	2.9	141
16	2H/1T Phase Transition of Multilayer MoS ₂ by Electrochemical Incorporation of S Vacancies. ACS Applied Energy Materials, 2018, 1, 4754-4765.	2.5	141
17	Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation. ACS Nano, 2016, 10, 1442-1453.	7.3	140
18	Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing. Nanoscale, 2014, 6, 4705-4715.	2.8	129

#	Article	IF	CITATIONS
19	Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement. ACS Nano, 2017, 11, 3067-3080.	7.3	127
20	Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation. ACS Nano, 2016, 10, 11105-11114.	7.3	126
21	Interaction between Plasmonic Nanoparticles Revisited with Transformation Optics. Physical Review Letters, 2010, 105, 233901.	2.9	123
22	Water-resistant perovskite nanodots enable robust two-photon lasing in aqueous environment. Nature Communications, 2020, 11, 1192.	5.8	123
23	Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials. Energy and Environmental Science, 2013, 6, 3537.	15.6	121
24	Plasmonic Dualâ€Enhancement and Precise Color Tuning of Gold Nanorod@SiO ₂ Coupled Core–Shell–Shell Upconversion Nanocrystals. Advanced Functional Materials, 2017, 27, 1701842.	7.8	121
25	Recoverable and Unrecoverable Bi ³⁺ -Related Photoemissions Induced by Thermal Expansion and Contraction in LuVO ₄ :Bi ³⁺ and ScVO ₄ :Bi ³⁺ Compounds. Chemistry of Materials, 2016, 28, 7807-7815.	3.2	114
26	Searching for magnetism in pyrrolic N-doped graphene synthesized via hydrothermal reaction. Carbon, 2015, 84, 460-468.	5.4	112
27	Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain. Nanoscale, 2014, 6, 1311-1317.	2.8	110
28	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie - International Edition, 2021, 60, 7227-7233.	7.2	107
29	Optically-Triggered Nanoscale Memory Effect in a Hybrid Plasmonic-Phase Changing Nanostructure. ACS Photonics, 2015, 2, 1306-1313.	3.2	105
30	3D Metaphotonic Nanostructures with Intrinsic Chirality. Advanced Functional Materials, 2018, 28, 1803147.	7.8	102
31	Roomâ€Temperature Meniscus Coating of >20% Perovskite Solar Cells: A Film Formation Mechanism Investigation. Advanced Functional Materials, 2019, 29, 1900092.	7.8	92
32	Plasmonic Hybridization between Nanowires and a Metallic Surface: A Transformation Optics Approach. ACS Nano, 2011, 5, 3293-3308.	7.3	89
33	A Novel Hybridâ€Layered Organic Phototransistor Enables Efficient Intermolecular Charge Transfer and Carrier Transport for Ultrasensitive Photodetection. Advanced Materials, 2019, 31, e1900763.	11.1	89
34	Fullâ€Parameter Omnidirectional Thermal Metadevices of Anisotropic Geometry. Advanced Materials, 2018, 30, e1804019.	11.1	87
35	Infrared Photodetectors Based on 2D Materials and Nanophotonics. Advanced Functional Materials, 2022, 32, .	7.8	86
36	Emission color tuning through manipulating the energy transfer from VO ₄ ^{3â^'} to Eu ³⁺ in single-phased LuVO ₄ :Eu ³⁺ phosphors. Journal of Materials Chemistry C, 2017, 5, 390-398.	2.7	83

#	Article	IF	CITATIONS
37	Broadband Light Harvesting Nanostructures Robust to Edge Bluntness. Physical Review Letters, 2012, 108, 023901.	2.9	82
38	Bifunctional Au@Pt core–shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy. Nanoscale, 2014, 6, 9063-9070.	2.8	81
39	Chirality Transfer from Subâ€Nanometer Biochemical Molecules to Subâ€Micrometer Plasmonic Metastructures: Physiochemical Mechanisms, Biosensing, and Bioimaging Opportunities. Advanced Materials, 2020, 32, e1907151.	11.1	81
40	Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering. ACS Nano, 2018, 12, 6492-6503.	7.3	77
41	Experimental Realization of Extreme Heat Flux Concentration with Easy-to-Make Thermal Metamaterials. Scientific Reports, 2015, 5, 11552.	1.6	73
42	Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Materials Today Energy, 2018, 10, 352-367.	2.5	73
43	Interband Absorption Enhanced Optical Activity in Discrete Au@Ag Core–Shell Nanocuboids: Probing Extended Helical Conformation of Chemisorbed Cysteine Molecules. Angewandte Chemie - International Edition, 2017, 56, 1283-1288.	7.2	70
44	Broadband nano-focusing of light using kissing nanowires. New Journal of Physics, 2010, 12, 093030.	1.2	68
45	Panchromatic thin perovskite solar cells with broadband plasmonic absorption enhancement and efficient light scattering management by Au@Ag core-shell nanocuboids. Nano Energy, 2017, 41, 654-664.	8.2	68
46	Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy. Nanoscale, 2016, 8, 7119-7126.	2.8	67
47	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 20437-20442.	7.2	66
48	Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder. Physical Review B, 2010, 82, .	1.1	65
49	Collective Plasmon Coupling in Gold Nanoparticle Clusters for Highly Efficient Photothermal Therapy. ACS Nano, 2022, 16, 910-920.	7.3	65
50	Enhanced high-order-harmonic generation in a carbon ablation plume. Physical Review A, 2012, 85, .	1.0	64
51	Interband Absorption Enhanced Optical Activity in Discrete Au@Ag Core–Shell Nanocuboids: Probing Extended Helical Conformation of Chemisorbed Cysteine Molecules. Angewandte Chemie, 2017, 129, 1303-1308.	1.6	64
52	Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide. Optics Letters, 2010, 35, 3988.	1.7	63
53	Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods. Scientific Reports, 2015, 5, 15235.	1.6	61
54	Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano Research, 2021, 14, 2003-2022.	5.8	61

#	Article	IF	CITATIONS
55	High-order harmonic generation in graphite plasma plumes using ultrashort laser pulses: a systematic analysis of harmonic radiation and plasma conditions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 165402.	0.6	60
56	Ultrabroadband Optical Superchirality in a 3D Stackedâ€Patch Plasmonic Metamaterial Designed by Two‣tep Glancing Angle Deposition. Advanced Functional Materials, 2016, 26, 7807-7816.	7.8	58
57	Covalent functionalization of MoS2 nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for Cd (II) detection. Talanta, 2018, 182, 38-48.	2.9	58
58	Two-Dimensional Antiferroelectricity in Nanostripe-Ordered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>In</mml:mi></mml:mrow><mml:mrow><mr Physical Review Letters, 2020, 125, 047601.</mr </mml:mrow></mml:msub></mml:mrow></mml:math 	nl:m ^{2;9} 2 <td>nml:mn></td>	nml:mn>
59	Tunable surface plasmon mediated emission from semiconductors by using metal alloys. Applied Physics Letters, 2007, 91, .	1.5	57
60	Excitonic quantum confinement modified optical conductivity of monolayer and few-layered MoS ₂ . Journal of Materials Chemistry C, 2016, 4, 8822-8828.	2.7	56
61	Defining Deepâ€Subwavelengthâ€Resolution, Wideâ€Colorâ€Gamut, and Largeâ€Viewingâ€Angle Flexible Subtractive Colors with an Ultrathin Asymmetric Fabry–Perot Lossy Cavity. Advanced Optical Materials, 2019, 7, 1900646.	3.6	56
62	Geometry Dependence of Surface Plasmon Polariton Lifetimes in Nanohole Arrays. ACS Nano, 2010, 4, 432-438.	7.3	54
63	Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene. ACS Nano, 2019, 13, 7644-7654.	7.3	54
64	Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity. Nature Communications, 2021, 12, 4326.	5.8	54
65	Plasmonic Interaction between Overlapping Nanowires. ACS Nano, 2011, 5, 597-607.	7.3	53
66	Two-dimensional ferroelasticity in van der Waals β'-In2Se3. Nature Communications, 2021, 12, 3665.	5.8	53
67	Distance control in-between plasmonic nanoparticles via biological and polymeric spacers. Nano Today, 2013, 8, 480-493.	6.2	50
68	Unveiling the Correlation between Nanometer-Thick Molecular Monolayer Sensitivity and Near-Field Enhancement and Localization in Coupled Plasmonic Oligomers. ACS Nano, 2014, 8, 9188-9198.	7.3	50
69	In situ SERS monitoring of photocatalytic organic decomposition using recyclable TiO2-coated Ag nanowire arrays. Applied Surface Science, 2014, 301, 351-357.	3.1	49
70	Ultrafast Light-Controlled Growth of Silver Nanoparticles for Direct Plasmonic Color Printing. ACS Nano, 2018, 12, 9913-9921.	7.3	49
71	Thermal and Nonthermal Effects in Plasmonâ€Mediated Electrochemistry at Nanostructured Ag Electrodes. Angewandte Chemie - International Edition, 2020, 59, 6790-6793.	7.2	49
72	Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering. Scientific Reports, 2013, 3, 3064.	1.6	47

#	Article	IF	CITATIONS
73	Plasmonic Au/TiO ₂ â€Dumbbellâ€Onâ€Film Nanocavities for Highâ€Efficiency Hotâ€Carrier Generation and Extraction. Advanced Functional Materials, 2018, 28, 1800383.	7.8	47
74	Perturbative countersurveillance metaoptics with compound nanosieves. Light: Science and Applications, 2019, 8, 101.	7.7	46
75	Quantitative SERS detection of low-concentration aromatic polychlorinated biphenyl-77 and 2,4,6-trinitrotoluene. Journal of Hazardous Materials, 2014, 280, 706-712.	6.5	44
76	Mechanistic Understanding of Excitation-Correlated Nonlinear Optical Properties in MoS ₂ Nanosheets and Nanodots: The Role of Exciton Resonance. ACS Photonics, 2016, 3, 2434-2444.	3.2	44
77	Chiral Coupling of Valley Excitons and Light through Photonic Spin–Orbit Interactions. Advanced Optical Materials, 2020, 8, 1901233.	3.6	44
78	Direct observation of nanoparticle-surfactant assembly and jamming at the water-oil interface. Science Advances, 2020, 6, .	4.7	44
79	Thermal Redistribution of Exciton Population in Monolayer Transition Metal Dichalcogenides Probed with Plasmon–Exciton Coupling Spectroscopy. ACS Photonics, 2019, 6, 411-421.	3.2	42
80	All-Dielectric Synthetic-Phase Metasurfaces Generating Practical Airy Beams. ACS Nano, 2021, 15, 1030-1038.	7.3	41
81	Conformal transformation applied to plasmonics beyond the quasistatic limit. Physical Review B, 2010, 82, .	1.1	40
82	Solution-processable reduced graphene oxide films as broadband terahertz wave impedance matching layers. Journal of Materials Chemistry C, 2015, 3, 2548-2556.	2.7	38
83	Topology Optimizationâ€Based Inverse Design of Plasmonic Nanodimer with Maximum Nearâ€Field Enhancement. Advanced Functional Materials, 2020, 30, 2000642.	7.8	38
84	Maximizing surface-enhanced Raman scattering sensitivity of surfactant-free Ag-Fe3O4 nanocomposites through optimization of silver nanoparticle density and magnetic self-assembly. Journal of Applied Physics, 2013, 114, .	1.1	37
85	Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission. ACS Applied Materials & Interfaces, 2016, 8, 472-479.	4.0	37
86	Ultrahigh refractive index sensing performance of plasmonic quadrupole resonances in gold nanoparticles. Nanoscale Research Letters, 2014, 9, 187.	3.1	36
87	Epitaxial VO ₂ Nanostructures: A Route to Large-Scale, Switchable Dielectric Metasurfaces. ACS Photonics, 2018, 5, 2561-2567.	3.2	36
88	Enhanced forward emission from ZnO via surface plasmons. Applied Physics Letters, 2007, 91, .	1.5	35
89	Transformation-Optics Description of Plasmonic Nanostructures Containing Blunt Edges/Corners: From Symmetric to Asymmetric Edge Rounding. ACS Nano, 2012, 6, 6492-6506.	7.3	35
90	Ablation of nanoparticles and efficient harmonic generation using a 1-kHz laser. Physical Review A, 2013, 88, .	1.0	35

#	Article	IF	CITATIONS
91	Numerical simulation of attosecond nanoplasmonic streaking. New Journal of Physics, 2011, 13, 083003.	1.2	34
92	Directional excitation of surface plasmon polaritons via nanoslits under varied incidence observed using leakage radiation microscopy. Optics Express, 2012, 20, 4893.	1.7	34
93	Ultra-rapid and highly efficient enrichment of organic pollutants via magnetic mesoporous nanosponge for ultrasensitive nanosensors. Nature Communications, 2021, 12, 6849.	5.8	34
94	Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays. Applied Physics Letters, 2009, 94, 183112.	1.5	32
95	In situ and room-temperature synthesis of ultra-long Ag nanoparticles-decorated Ag molybdate nanowires as high-sensitivity SERS substrates. Applied Surface Science, 2013, 287, 404-410.	3.1	32
96	Plasmonâ€Enhanced Blue Upconversion Luminescence by Indium Nanocrystals. Advanced Functional Materials, 2019, 29, 1901242.	7.8	32
97	A comprehensive comparison study on the vibrational and optical properties of CVD-grown and mechanically exfoliated few-layered WS ₂ . Journal of Materials Chemistry C, 2017, 5, 11239-11245.	2.7	31
98	Recent Advances in Clusteroluminescence. Topics in Current Chemistry, 2021, 379, 14.	3.0	31
99	Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffractionâ€Induced Enhanced Absorption and Scattering. Small, 2014, 10, 576-583.	5.2	30
100	Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light: Science and Applications, 2021, 10, 219.	7.7	30
101	Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces. Photonics Research, 2020, 8, 1148.	3.4	29
102	Comparison of high-order harmonic generation in uracil and thymine ablation plumes. Physical Chemistry Chemical Physics, 2013, 15, 12308.	1.3	27
103	Geometric modulation of induced plasmonic circular dichroism in nanoparticle assemblies based on backaction and field enhancement. Nanoscale, 2018, 10, 19684-19691.	2.8	27
104	Phase-controlled metasurface design via optimized genetic algorithm. Nanophotonics, 2020, 9, 3931-3939.	2.9	27
105	Omnidirectional absorption enhancement of symmetry-broken crescent-deformed single-nanowire photovoltaic cells. Nano Energy, 2015, 13, 9-17.	8.2	26
106	Plasmonic Black Absorbers for Enhanced Photocurrent of Visible‣ight Photocatalysis. Advanced Optical Materials, 2017, 5, 1600399.	3.6	26
107	Dynamic tuning of enhanced intrinsic circular dichroism in plasmonic stereo-metamolecule array with surface lattice resonance. Nanophotonics, 2020, 9, 3419-3434.	2.9	26
108	Photoluminescence enhancement in few-layer WS2 films via Au nanoparticles. AIP Advances, 2015, 5, .	0.6	25

#	Article	IF	CITATIONS
109	Improving electrocatalytic activity of 2H-MoS2 nanosheets obtained by liquid phase exfoliation: Covalent surface modification versus interlayer interaction. Journal of Catalysis, 2020, 391, 424-434.	3.1	25
110	Plasmonic Nanocavity Induced Coupling and Boost of Dark Excitons in Monolayer WSe ₂ at Room Temperature. Nano Letters, 2022, 22, 1915-1921.	4.5	25
111	Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity. Nanoscale, 2013, 5, 9129.	2.8	24
112	Temporal broadening of attosecond photoelectron wavepackets from solid surfaces. Optica, 2015, 2, 383.	4.8	24
113	Probing Conformation Change and Binding Mode of Metal Ion–Carboxyl Coordination Complex through Resonant Surface-Enhanced Raman Spectroscopy and Density Functional Theory. Journal of Physical Chemistry Letters, 2019, 10, 4692-4698.	2.1	24
114	Strong competition between electromagnetic enhancement and surface-energy-transfer induced quenching in plasmonic dye-sensitized solar cells: A generic yet controllable effect. Nano Energy, 2016, 26, 297-304.	8.2	23
115	Enhanced visible and tunable infrared transmittance of W-doped VO2/SiO2/PVP composite films for smart windows. Optical Materials, 2021, 121, 111485.	1.7	23
116	Effects of gap thickness and emitter location on the photoluminescence enhancement of monolayer MoS2 in a plasmonic nanoparticle-film coupled system. Nanophotonics, 2020, 9, 2097-2105.	2.9	23
117	Strong coupling in two-dimensional materials-based nanostructures: a review. Journal of Optics (United Kingdom), 2022, 24, 024009.	1.0	23
118	Highly Ordered Ag/Cu Hybrid Nanostructure Arrays for Ultrasensitive Surfaceâ€Enhanced Raman Spectroscopy. Advanced Materials Interfaces, 2016, 3, 1600115.	1.9	22
119	Polarization-resolved optical response of plasmonic particle-on-film nanocavities. Journal of Optics (United Kingdom), 2018, 20, 024010.	1.0	22
120	Use of Dielectric Metasurfaces to Generate Deep‣ubwavelength Nondiffractive Besselâ€Like Beams with Arbitrary Trajectories and Ultralarge Deflection. Laser and Photonics Reviews, 2021, 15, 2000487.	4.4	22
121	Enhanced efficiency and stability of tripleâ€cation perovskite solar cells with CsPbl _{<i>x</i>} Br _{3 â^' <i>x</i>} QDs "surface patches― SmartMat, 2022, 3,	\$ 13 -521.	22
122	Plasmon gap mode-assisted third-harmonic generation from metal film-coupled nanowires. Applied Physics Letters, 2014, 104, .	1.5	21
123	Highly efficient and stable perovskite solar cells enabled by a fluoro-functionalized TiO2 inorganic interlayer. Matter, 2021, 4, 3301-3312.	5.0	21
124	A Flexible Plasmonic-Membrane-Enhanced Broadband Tin-Based Perovskite Photodetector. Nano Letters, 2021, 21, 9195-9202.	4.5	21
125	Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes. Coordination Chemistry Reviews, 2022, 469, 214665.	9.5	21
126	Clam-inspired nanoparticle immobilization method using adhesive tape as microchip substrate. Sensors and Actuators B: Chemical, 2016, 222, 106-111.	4.0	20

#	Article	IF	CITATIONS
127	Quantitative Determination of Contribution by Enhanced Local Electric Field, Antennaâ€Amplified Light Scattering, and Surface Energy Transfer to the Performance of Plasmonic Organic Solar Cells. Small, 2018, 14, e1800870.	5.2	20
128	Zâ€Scheme Flowerâ€Like SnO ₂ /gâ€C ₃ N ₄ Composite with Sn ²⁺ Active Center for Enhanced Visibleâ€Light Photocatalytic Activity. Advanced Sustainable Systems, 2021, 5, 2100087.	2.7	20
129	Experimental Demonstration of Genetic Algorithm Based Metalens Design for Generating Side‣obeâ€Suppressed, Large Depthâ€ofâ€Focus Light Sheet. Laser and Photonics Reviews, 2022, 16, .	4.4	20
130	Three-dimensional visible-light capsule enclosing perfect supersized darkness via antiresolution. Laser and Photonics Reviews, 2014, 8, 743-749.	4.4	19
131	Shaping the Emission Spectral Profile of Quantum Dots with Periodic Dielectric and Metallic Nanostructures. Advanced Optical Materials, 2014, 2, 56-64.	3.6	18
132	Grating-coupled Otto configuration for hybridized surface phonon polariton excitation for local refractive index sensitivity enhancement. Optics Express, 2016, 24, 19517.	1.7	18
133	Influence of Plasmonic Effect on the Upconversion Emission Characteristics of NaYF ₄ Hexagonal Microrods. Inorganic Chemistry, 2018, 57, 8200-8204.	1.9	18
134	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie, 2021, 133, 7303-7309.	1.6	18
135	Plasmonic Local Heating Induced Strain Modulation for Enhanced Efficiency and Stability of Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	18
136	Polymer coating with gradientâ€dispersed dielectric nanoparticles for enhanced daytime radiative cooling. EcoMat, 2022, 4, .	6.8	17
137	Multiplane Illumination Enabled by Fourier-Transform Metasurfaces for High-Speed Light-Sheet Microscopy. ACS Photonics, 2018, 5, 1676-1684.	3.2	16
138	Selective Excitation of Polarizationâ€Steered Chiral Photoluminescence in Single Plasmonic Nanohelicoids. Advanced Functional Materials, 2021, 31, 2101502.	7.8	16
139	The role of oxygen defects in a bismuth doped ScVO ₄ matrix: tuning luminescence by hydrogen treatment. Journal of Materials Chemistry C, 2017, 5, 314-321.	2.7	15
140	Scanning Nanowelding Lithography for Rewritable One‧tep Patterning of Subâ€50 nm Highâ€Aspectâ€Ratio Metal Nanostructures. Advanced Materials, 2018, 30, e1801772.	11.1	15
141	Tight-binding modeling of excitonic response in van der Waals stacked 2D semiconductors. Nanoscale Horizons, 2019, 4, 969-974.	4.1	15
142	Plasmonâ€Induced Optical Magnetism in an Ultrathin Metal Nanosphereâ€Based Dimerâ€onâ€Film Nanocavity. Laser and Photonics Reviews, 2020, 14, 2000068.	4.4	15
143	Enhanced Photoresponsivity of a Germanium Single-Nanowire Photodetector Confined within a Superwavelength Metallic Slit. ACS Photonics, 2014, 1, 483-488.	3.2	14
144	Bandwidth-tunable THz absorber based on diagonally distributed double-sized VO ₂ disks. Applied Optics, 2021, 60, 3062.	0.9	14

#	Article	IF	CITATIONS
145	Long-Range Directional Routing and Spatial Selection of High-Spin-Purity Valley Trion Emission in Monolayer WS ₂ . ACS Nano, 2021, 15, 18163-18171.	7.3	14
146	Electron Energy‣oss Spectroscopy of Spatial Nonlocality and Quantum Tunneling Effects in the Bright and Dark Plasmon Modes of Gold Nanosphere Dimers. Advanced Quantum Technologies, 2018, 1, 1800016.	1.8	13
147	Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes. Nanoscale, 2021, 13, 2792-2800.	2.8	13
148	Mapping the Magnetic Field Intensity of Light with the Nonlinear Optical Emission of a Silicon Nanoparticle. Nano Letters, 2021, 21, 2453-2460.	4.5	13
149	High-efficiency, large-area lattice light-sheet generation by dielectric metasurfaces. Nanophotonics, 2020, 9, 4043-4051.	2.9	13
150	High-Q localized surface plasmon resonance based on bound states in the continuum for enhanced refractive index sensing. Optics Letters, 2022, 47, 609.	1.7	13
151	Enhanced Photoelectrical Response of Hydrogenated Amorphous Silicon Single-Nanowire Solar Cells by Front-Opening Crescent Design. Nanoscale Research Letters, 2016, 11, 233.	3.1	12
152	Surface plasmonic spectroscopy revealing the oxidation dynamics of copper nanowires embedded in polycarbonate ion-track templates. Journal of Materials Chemistry C, 2016, 4, 3956-3962.	2.7	12
153	Restoring the silenced surface second-harmonic generation in split-ring resonators by magnetic and electric mode matching. Optics Express, 2019, 27, 26377.	1.7	12
154	Periodic Arrays of 3D AuNPâ€Capped VO ₂ Shells and Their Temperatureâ€Tunable SERS Performance. Advanced Optical Materials, 2022, 10, .	3.6	12
155	Interfacial Control of ZnO Microrod for Whispering Gallery Mode Lasing. ACS Photonics, 2018, 5, 2313-2319.	3.2	11
156	Hollow Au nanorattles for boosting the performance of organic photovoltaics. Journal of Materials Chemistry A, 2019, 7, 26797-26803.	5.2	11
157	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 20600-20605.	1.6	11
158	Plasmonic Nanohole Arrays with Enhanced Visible Light Photoelectrocatalytic Activity. ACS Photonics, 2022, 9, 652-663.	3.2	11
159	Effects of Stokes shift and Purcell enhancement on fluorescence-assisted radiative cooling. Journal of Materials Chemistry A, 2022, 10, 19635-19640.	5.2	11
160	Radial anisotropy from a geometric viewpoint: Topological singularity and effective medium realization. Physical Review B, 2017, 96, .	1.1	10
161	Scattering asymmetry and circular dichroism in coupled PT-symmetric chiral nanoparticles. Nanophotonics, 2022, 11, 2159-2167.	2.9	9
162	Intrinsic superflat bands in general twisted bilayer systems. Light: Science and Applications, 2022, 11, .	7.7	9

#	Article	IF	CITATIONS
163	Numerical and analytical evaluations of the sensing sensitivity of waveguide mode in one-dimensional metallic gratings. Nanotechnology, 2012, 23, 275501.	1.3	8
164	Extended homogeneous nanoripple formation during interaction of high-intensity few-cycle pulses with a moving silicon wafer. Applied Physics A: Materials Science and Processing, 2013, 112, 457-462.	1.1	8
165	Spectroscopic ellipsometry as an optical probe of strain evolution in ferroelectric thin films. Optics Express, 2012, 20, 4419.	1.7	7
166	Synthetic Plasmonic Nanocircuits and the Evolution of Their Correlated Spatial Arrangement and Resonance Spectrum. ACS Photonics, 2021, 8, 166-174.	3.2	6
167	Mid-IR plasmonic antennas on silicon-rich oxinitride absorbing substrates: Nonlinear scaling of resonance wavelengths with antenna length. Applied Physics Letters, 2009, 95, .	1.5	5
168	Merging individual metal nanostructures into a superstructure for plasmon mode hybridization and electric-field nanofocusing. Journal of Materials Chemistry C, 2020, 8, 9293-9302.	2.7	5
169	Enhanced solar water splitting using plasmon-induced resonance energy transfer and unidirectional charge carrier transport. Optics Express, 2021, 29, 34810.	1.7	5
170	Surface plasmon mediated emission from metal/ZnO: an example for the fabrication of high brightness top-emitting light emitting diodes. , 2007, 6474, 105.		4
171	Cyanide-free preparation of gold nanowires: controlled crystallinity, crystallographic orientation and enhanced field emission. RSC Advances, 2015, 5, 32103-32109.	1.7	4
172	Surface Plasmon Polariton Cross-Coupling Enhanced Forward Emission from Insulator–Metal-Capped ZnO Films. ACS Applied Materials & Interfaces, 2015, 7, 23496-23500.	4.0	4
173	Thermal and Nonthermal Effects in Plasmonâ€Mediated Electrochemistry at Nanostructured Ag Electrodes. Angewandte Chemie, 2020, 132, 6856-6859.	1.6	4
174	A Dataâ€Miningâ€Assisted Design of Structural Colors on Diamond Metasurfaces. Advanced Photonics Research, 0, , 2100292.	1.7	4
175	A generalized method for calculating plasmoelectric potential in non-Mie-resonant plasmonic systems. Nanophotonics, 2022, 11, 2453-2464.	2.9	4
176	Activating the Basal Planes in 2Hâ€MoTe ₂ Monolayers by Incorporating Singleâ€Atom Dispersed N or P for Enhanced Electrocatalytic Overall Water Splitting. Advanced Sustainable Systems, 2022, 6, .	2.7	4
177	Near-field nano-spectroscopy of strong mode coupling in phonon-polaritonic crystals. Applied Physics Reviews, 2022, 9, .	5.5	4
178	Asymmetric Propagation of Optical Signals in Graded Plasmonic Chains. Plasmonics, 2011, 6, 19-27.	1.8	3
179	Probing electron transport in plasmonic molecular junctions with two-photon luminescence spectroscopy. Nanophotonics, 2021, 10, 2467-2479.	2.9	3
180	Designing plasmonic exceptional points by transformation optics. Optics Express, 2021, 29, 16046.	1.7	2

#	Article	IF	CITATIONS
181	Single Plasmonic Nanohelicoids: Selective Excitation of Polarization‧teered Chiral Photoluminescence in Single Plasmonic Nanohelicoids (Adv. Funct. Mater. 30/2021). Advanced Functional Materials, 2021, 31, 2170217.	7.8	2
182	Spectral Shaping: Shaping the Emission Spectral Profile of Quantum Dots with Periodic Dielectric and Metallic Nanostructures (Advanced Optical Materials 1/2014). Advanced Optical Materials, 2014, 2, 2-2.	3.6	1
183	Brightening of Dark Excitons in Monolayer WS2 Sandwiched in a Metal-film-coupled Nanocavity. , 2018, , .		1
184	A Dataâ€Miningâ€Assisted Design of Structural Colors on Diamond Metasurfaces. Advanced Photonics Research, 2022, 3, .	1.7	1
185	Design criteria for multipulse operation of a multisection pulse line ion accelerator. Physical Review Special Topics: Accelerators and Beams, 2007, 10, .	1.8	0
186	A system for doing surface science with attosecond pulses. , 2011, , .		0
187	Determining changes in metallic nanoparticles due to sputter cleaning. , 2014, , .		0
188	Photocatalysis: Plasmonic Black Absorbers for Enhanced Photocurrent of Visible‣ight Photocatalysis (Advanced Optical Materials 2/2017). Advanced Optical Materials, 2017, 5, .	3.6	0
189	Hierarchical Porous Plasmonic Nanostructures as New SERS Substrates with Ultra-High Reproducibility and Sensitivity. , 2018, , 161-187.		Ο
190	Sliver-Nanoparticle Enhanced Pva Thin-Film Colorimetric Humidity Sensor. , 2019, , .		0
191	Observation of a plasmon induced magnetic resonance in a gold sphere dimer-on-film nanocavity. , 2018, , .		Ο
192	Optical Superchirality in a Perfect Lattice of Three-dimensional Nano-holes with High Q-factor and large area. , 2018, , .		0
193	Plasmon hybridization in plasmonic dimer-on-film nanocavity for photoluminescence enhancement. , 2018, , .		Ο